• Title/Summary/Keyword: Nitride layer

Search Result 441, Processing Time 0.032 seconds

A Study on the Optimization of the SiNx:H Film for Crystalline Silicon Sloar Cells (결정질 실리콘 태양전지용 SiNx:H 박막 특성의 최적화 연구)

  • Lee, Kyung-Dong;Kim, Young-Do;Dahiwale, Shailendra S.;Boo, Hyun-Pil;Park, Sung-Eun;Tark, Sung-Ju;Kim, Dong-Hwan
    • Journal of the Korean Vacuum Society
    • /
    • v.21 no.1
    • /
    • pp.29-35
    • /
    • 2012
  • The Hydrogenated silicon nitride (SiNx:H) using plasma enhanced chemical vapor deposition is widely used in photovoltaic industry as an antireflection coating and passivation layer. In the high temperature firing process, the $SiN_x:H$ film should not change the properties for its use as high quality surface layer in crystalline silicon solar cells. Initially PECVD-$SiN_x:H$ film trends were investigated by varying the deposition parameters (temperature, electrode gap, RF power, gas flow rate etc.) to optimize the process parameter conditions. Then by varying gas ratios ($NH_3/SiH_4$), the hydrogenated silicon nitride films were analyzed for its optical, electrical, chemical and surface passivation properties. The $SiN_x:H$ films of refractive indices 1.90~2.20 were obtained. The film deposited with the gas ratio of 3.6 (Refractive index=1.98) showed the best properties in after firing process condition. The single crystalline silicon solar cells fabricated according to optimized gas ratio (R=3.6) condition on large area substrate of size $156{\times}156mm$ (Pseudo square) was found to have the conversion efficiency as high as 17.2%. Optimized hydrogenated silicon nitride surface layer and high efficiency crystalline silicon solar cells fabrication sequence has also been explained in this study.

The Added Carbon Content Effect on the Hardness And Wear Characteristics in Ion-Nitriding (이온질화 에 있어서 첨가탄소량 이 경도 및 마모특성 에 주는 영향)

  • 김희송
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.7 no.1
    • /
    • pp.19-27
    • /
    • 1983
  • This paper deals with hardness and wear characteristics of ion-nitrided metal, and with ion-nitride processing which is concerned with the effects of added carbon content in gas atmosphere. A small optimal amount of carbon content in gas atmosphere increase compound layer thickness, as well as to increase diffusion layer thickness and hardness, and reduces wear rate when the applied wear load is small. It is found in the analysis that under small applied wear load, the critical depth where voids and cracks may be created and propagated is located at the compound layer, so that the abrasive wear where hardness is an important factor, is created and the existence of compound layer reduces the amount of wear. When the load becomes large, the critical depth is located below nucleation and propagation, is created and the existence of compound layer increase wear rate.

The Effect of the Gas Ration on the Characteristics of Plasma Nitrided SCM440 Steel (SCM440강의 플라즈마 질화특성에 미치는 가스비율의 영향)

  • 김무길
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.5
    • /
    • pp.712-720
    • /
    • 1998
  • The effect of H2:N2 gas ratio on the case thickness hardness and nitrides formation in the sur-face of SCM440 machine structural steel have been studied by micro-pulse plasma process. The thickness of compound layer increased with the increase of nitrogen content in the gas com-position. The maximum thickness of compound layer the maximum case depth and the maximum surface hardness were about 15.8${\mu}m$, 400${\mu}m$ and Hv765 respectively in the nitriding condition of 250Pa and 70% nitrogen content at $520^{\circ}C$ for 7hrs. Generally only nitride phases such as ${\'{\gamma}}$($Fe_4N$)$\varepsilon(Fe_2}{_3N}$ phases were detected in compound and diffusion layer by XRD analysis. The amount of $\varepsilon(Fe_2}{_3N}$ phase increased with the increase of nitrogen content. The relative amounts and kind of phases formed in the nitrided case changed with the change of nitrogen content in the gas composition.

  • PDF

Determination of Thermal Conductivity and Numerical Analysis of Al-Cr-N-O Composites Layer Formed by Hydro-thermal Process (수열합성된 Al-Cr-N-O계 도포층의 열전도 측정과 수학적 해석)

  • Kim, Ma-Ro;Yang, So-Eun;Lee, Jong-Jae;Kim, Byeong-Du;Choe, Yong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2014.11a
    • /
    • pp.215-215
    • /
    • 2014
  • Composites layer of Al-Cr-Ni-O system was prepared on a steel plate by hydro-thermal process at $700^{\circ}C$ for 12 hours, which phase identification and thermal conductivity were determined. The composites layer consisted of aluminum nitride, alumina, chromium carbide and aluminium, which density was $3.7kg/m^3$. The thermal conductivity of the coating layer determined by thermal data acquisition system was about 98.0 W/m/ which depended on the AlN content. Numerical modelling of the heat transfer behavior of the coating layer was well agreement with the empirical data.

  • PDF

MONOnS 각 layer층의 두께에 따른 특성

  • Baek, Gyeong-Hyeon;Jeong, Seong-Uk;Jang, Gyeong-Su;Park, Hyeong-Sik;Yu, Gyeong-Yeol;Lee, Won-Baek;Lee, Jun-Sin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.253-253
    • /
    • 2010
  • 유리 기판 상에 시스템 온 패널과 같은 차세대 디스플레이 구현과 평판형 디스플레이의 문제점 해결을 위하여 비휘발성 메모리 소자 등의 전자 소자 집적화와 빠른 구동 속도를 가진 박막트랜지스터가 요구된다. 본 논문에서는 비휘발성 메모리 소자에서 MONOnS 각 layer층의 두께 따른 특성에 대한 연구를 진행하였다. 실험은 ONO 구조를 12.5nm/35nm/2.7nm, 12.5nm/20nm/2.3nm, 8.5nm/10nm/2.3nm, 6.5nm/10nm/1.9nm 의 두께로 증착하였다. ${\Delta}VFB$, Retention time, capacitance을 측정하여 oxide/Nitride/Oxynitride 층의 두께 변화를 통해 최적화된 tunneling layer와 charge storage layer, 그리고 blocking layer의 두께를 알 수 있다.

  • PDF

Bonding Strength Evaluation of Copper Bonding Using Copper Nitride Layer (구리 질화막을 이용한 구리 접합 구조의 접합강도 연구)

  • Seo, Hankyeol;Park, Haesung;Kim, Gahui;Park, Young-Bae;Kim, Sarah Eunkyung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.3
    • /
    • pp.55-60
    • /
    • 2020
  • The recent semiconductor packaging technology is evolving into a high-performance system-in-packaging (SIP) structure, and copper-to-copper bonding process becomes an important core technology to realize SIP. Copper-to-copper bonding process faces challenges such as copper oxidation and high temperature and high pressure process conditions. In this study, the bonding interface quality of low-temperature copper-to-copper bonding using a two-step plasma treatment was investigated through quantitative bonding strength measurements. Our two-step plasma treatment formed copper nitride layer on copper surface which enables low-temperature copper bonding. The bonding strength was evaluated by the four-point bending test method and the shear test method, and the average bonding shear strength was 30.40 MPa, showing that the copper-to-copper bonding process using a two-step plasma process had excellent bonding strength.

The Adhesion of TiN Coatings on Plasma-nitrided Steel (이온 질화층이 TiN 박막의 밀착성에 미치는 영향)

  • Ko, K.M.;Kim, H.W.;Kim, M.I.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.4 no.4
    • /
    • pp.1-14
    • /
    • 1991
  • In PECVD(Plasma-Enhanced Chemical Vapor Deposition) process, titanium nitride is thin and its adhesion is poor for the protective coatings. Therefore it has been studied that intermediate layer forms between substrate and TiN thin film. Using R.F. plasma nitriding, nitride layer was first formed, then TiN thin film coated by PECVD. The chemical composition of the coatings has been characterized using AES, EDS and their crystallographic structure by means of XRD. Mechanical properties such as microhardness and film adhesion have also been determined by vickers hardness test, scratch test and indentation test. As a result, there was no difference in chemical composition and structure between the TiN deposition only and the composite of TiN deposition on nitrided steel. It was found that nitrided substrate increased the hardness of TiN coatings and was beneficial in preventing the plastic deformation in the substrate. Therefore the effective load bearing capacity of the TiN coatings on nitrided steel was increased and their adhesion was improved as well. According to the results of this study, the processes that lead to the formation of composite layers characterized by good working properties, i.e., high microhardness, adhesion and resistance to deformation.

  • PDF