• Title/Summary/Keyword: Nitridation rate

Search Result 31, Processing Time 0.025 seconds

Morphologically Controlled Growth of Aluminum Nitride Nanostructures by the Carbothermal Reduction and Nitridation Method

  • Jung, Woo-Sik
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.7
    • /
    • pp.1563-1566
    • /
    • 2009
  • One-dimensional aluminum nitride (AlN) nanostructures were synthesized by calcining an Al(OH)(succinate) complex, which contained a very small amount of iron as a catalyst, under a mixed gas flow of nitrogen and CO (1 vol%). The complex decomposed into a homogeneous mixture of alumina and carbon at the molecular level, resulting in the lowering of the formation temperature of the AlN nanostructures. The morphology of the nanostructures such as nanocone, nanoneedle, nanowire, and nanobamboo was controlled by varying the reaction conditions, including the reaction atmosphere, reaction temperature, duration time, and ramping rate. Iron droplets were observed on the tips of the AlN nanostructures, strongly supporting that the nanostructures grow through the vapor-liquid-solid mechanism. The variation in the morphology of the nanostructures was well explained in terms of the relationship between the diffusion rate of AlN vapor into the iron droplets and the growth rate of the nanostructures.

GaN의 박막증착과 열역학적 해석

  • 박범진;오태효;박진호;신무환
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1997.10a
    • /
    • pp.149-154
    • /
    • 1997
  • 광소자 및 새로운 개념의 전력소자 응용을 위하여 Wide Bandgap 반도체에 대한 관심이 급증되고 있다. 특히 직접천이형인 GaN는 청색 발광소자 응용 및 고출력, 고주파용 전력소자 응용에 이상적인 전자물성을 갖고 있다. 따라서 본 연구에서는 GaCl$_3$와 NH$_3$를 source gas로 하는 CVPE법을 사용하여 (0001) sapphire와 비교하였다. 기판의 증착온도 104$0^{\circ}C$에서 source gas의 III/V flow rate를 2로 분석하여 45분간 성장시킨 경우 그 증착속도는 약 40 $\mu\textrm{m}$/hr 정도였으며, 이 때 XRD을 향상시키기 위하여 증착이전에 기판의 표면에 증착온도에서 NH$_3$를 이용한 nitridation 처리를 하였으며, 그 처리시간이 3분일 때 XRD의 FWHM 특성이 가하여 조사한 결과 363 nm에서 peak가 검출되었다. 본 연구에서는 양질의 GaN 박막성장을 위한 증착조건 인자중 source gas의 flow rate가 가장 중요한 변수임을 적정 온도 범위가 75$0^{\circ}C$ 근처로 조사되었다. 실험과 모사결과의 박막 증착 최적온도의 차이는 GaN 증착시의 반응 Kinetics가 느리기 때문인 것으로 해석된다.

  • PDF

Densification of Reaction Bonded Silicon Nitride with the Addition of Fine Si Powder - Effects on the Sinterability and Mechanical Properties

  • Lee, Sea-Hoon;Cho, Chun-Rae;Park, Young-Jo;Ko, Jae-Woong;Kim, Hai-Doo;Lin, Hua-Tay;Becher, Paul
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.3
    • /
    • pp.218-225
    • /
    • 2013
  • The densification behavior and strength of sintered reaction bonded silicon nitrides (SRBSN) that contain $Lu_2O_3-SiO_2$ additives were improved by the addition of fine Si powder. Dense specimens (relative density: 99.5%) were obtained by gas-pressure sintering (GPS) at $1850^{\circ}C$ through the addition of fine Si. In contrast, the densification of conventional specimens did not complete at $1950^{\circ}C$. The fine Si decreased the onset temperature of shrinkage and increased the shrinkage rate because the additive helped the compaction of green bodies and induced the formation of fine $Si_3N_4$ particles after nitridation and sintering at and above $1600^{\circ}C$. The amount of residual $SiO_2$ within the specimens was not strongly affected by adding fine Si powder because most of the $SiO_2$ layer that had formed on the fine Si particles decomposed during nitridation. The maximum strength and fracture toughness of the specimens were 991 MPa and $8.0MPa{\cdot}m^{1/2}$, respectively.

Synthesis of Si3N4 from Domestic Silica-stone by Direct Nitriding Method (규석광으로부터 직접 질화법에 의한 질화규소의 합성)

  • Sohn Yong-Un;Joo Sung-Min;Chung Hun-Saeng
    • Korean Journal of Materials Research
    • /
    • v.14 no.5
    • /
    • pp.358-362
    • /
    • 2004
  • $Si_3$$N_4$ ceramics have been identified as one of the promising structural ceramics. This study has been carried out to investigate of the synthetic behaviors of $Si_3$$N_4$ derived from domestic silica-stone by direct nitriding method. The silicon nitridation reaction has been studied in the temperature range of $1300~1550^{\circ}C$. Below the $1400^{\circ}C$, the nitriding rate was measured to be 16%. For the temperatures higher than the $1400^{\circ}C$, $\beta$-$Si_3$$N_4$ phase was formed mainly, and the nitriding rate showed above 98%. With the increasing of sample weight of silicon powder, the nitriding rate and $\beta$-$Si_3$$N_4$ phase increased at $1400^{\circ}C$ for 2 hours. The shape and particle size of$ Si_3$$N_4$ powder synthesized at $1400^{\circ}C$ for 2 hours showed the irregular angular-type and 10 $\mu\textrm{m}$, respectively.

Synthesis of Silicon Nitride from Ethyl Silicate(I) (Ethyl Silicate로부터 Silicon Nitride의 합성(I))

  • 오일환;박금철
    • Journal of the Korean Ceramic Society
    • /
    • v.25 no.4
    • /
    • pp.415-423
    • /
    • 1988
  • Mixtures of carbon and silica (about 0.46${\mu}{\textrm}{m}$) which was synthesized by the hydrolysis of ethyl silicate, the molar ratio of silica/carbon was fixed as 1/10(weight ratio : 1/2), were nitrided in the temperature range 135$0^{\circ}C$~150$0^{\circ}C$. The phse of the product Si3N4 was $\alpha$ phase and the morphology was hexagnoal prism and the nitridation reaction was completed in 5 hrs at 150$0^{\circ}C$ or 7hrs at 145$0^{\circ}C$. The reaction rate above 150$0^{\circ}C$ was diffusion-controlled, following Jander equation. Activation energy Q was derived from the Arrhenius plot and the value was about 101kcal/mol. Axis ratio of Lattice constants(c/a) was 0.726 and unit volume was $\AA$3, the larger the molar ratio of carbon/Alkoxide was, the smaller the particle size of $\alpha$Si3N4 was.

  • PDF

Synthesis of $\beta$-Sialon from Wando Pyrophyllite (2) (완도 납석으로부터 $\beta$-Sialon의 합성 (2))

  • 이홍림;장병국;이형복
    • Journal of the Korean Ceramic Society
    • /
    • v.22 no.5
    • /
    • pp.35-42
    • /
    • 1985
  • $eta$-Sialon powders were prepared by reduction-nitridation from mixture of Wando pyrophyllite and graphite as a reducing agent at 135$0^{\circ}C$ in 80% $N_2$-20% $H_2$ atmosphere. As the reaction products $Si_2ON_2$, $\beta$-$Si_3N_4$ a--$Si_3N_4$ and $\beta$-SiC were observed. Additive agents of MgO, CaO, $Y_2O_3$ were used for promoting the reduction and nitridiation aeaction. The present study was conducted to investigate the effects of silica-carbon ratio ($SiO_2$/C=weight ratio), raction time gas flow rate pellet size and powder packing on synthesis of $\beta$-Sialon from Wando pyropyllite.

  • PDF

Tribological Properties of Ti(C,N)-based Cermet after Hot Isostatic Pressing at High Nitrogen Pressure

  • Xiong, Wei-hao;Zheng, Li-yun;Yan, Xian-mei
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.663-664
    • /
    • 2006
  • Sintered Ti(C,N)-based cermets were treated with hot isostatic pressing (HIP) at different nitrogen pressures. The tribological properties of the treated cermets have been evaluated. The results show that a hard near-surface area rich in TiN formed after HIP treatment. The cermets treated at higher pressure had a relatively lower friction coefficient and specific wear rate. In all cases the microhardness of treated cermets is higher than that without HIP natridation. The wear mechanisms of cermets were hard particle flaking-off and ploughing. It was also found that the HIP natridation is well-suited for improving the tribological properties of cermets.

  • PDF

Magnetic Tunnel Junctions with AlN and AlO Barriers

  • Yoon, Tae-Sick;Yoshimura, Satoru;Tsunoda, Masakiyo;Takahashi, Migaku;Park, Bum-Chan;Lee, Young-Woo;Li, Ying;Kim, Chong-Oh
    • Journal of Magnetics
    • /
    • v.9 no.1
    • /
    • pp.17-22
    • /
    • 2004
  • We studied the magnetotransport properties of tunnel junctions with AlO and AlN barriers fabricated using microwave-excited plasma. The plasma nitridation process provided wider controllability than the plasma oxidization for the formation of MTJs with ultra-thin insulating layer, because of the slow nitriding rate of metal Al layers, comparing with the oxidizing rate of them. High tunnel magnetoresistance (TMR) ratios of 49 and 44% with respective resistance-area product $(R{\times}A) of 3 {\times} 10^4 and 6 {\times} 10^3 {\Omega}{\mu}m^2$ were obtained in the Co-Fe/Al-N/Co-Fe MTJs. We conclude that AlN is a hopeful barrier material to realize MTJs with high TMR ratio and low $R{\times}A$ for high performance MRAM cells. In addition, in order to clarify the annealing temperature dependence of TMR, the local transport properties were measured for Ta $50{\AA} /Cu 200 {\AA}/Ta 50 {\AA}/Ni_{76}Fe_{24} 20 {\AA}/Cu 50 {\AA}/Mn_{75}Ir_{25} 100 {\AA}/Co_{71}Fe_{29} 40 {\AA}/Al-O$ junction with $d_{Al}= 8 {\AA} and P_{O2}{\times}t_{0X}/ = 8.4 {\times} 10^4$ at various temperatures. The current histogram statistically calculated from the electrical current image was well in accord with the fitting result considering the Gaussian distribution and Fowler-Nordheim equation. After annealing at $340^{\circ}C$, where the TMR ratio of the corresponding MTJ had the maximum value of 44%, the average barrier height increased to 1.12 eV and its standard deviation decreased to 0.1 eV. The increase of TMR ratio after annealing could be well explained by the enhancement of the average barrier height and the reduction of its fluctuation.

Synthesis of solar light responsive ZnO/TaON photocatalysts and their photocatalytic activity (태양광 응답형 ZnO/TaON 나노 복합체의 제조 및 광촉매 특성 평가)

  • Kim, Tae-Ho;Jo, Yong-Hyeon;Lee, Su-Wan
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2014.11a
    • /
    • pp.256-257
    • /
    • 2014
  • The effects of the preparation conditions of ZnO-modified TaON on the photocatalytic activity for degradation of rhodamine B dye (Rh. B) under simulated solar light were investigated. The ZnO/TaON nanocomposite were prepared by loading particulate $Ta_2O_5$ with ZnO using different ZnO contents, followed by thermal nitridation at 1123 K for 5 h under $NH_3$ flow (20 ml min.1). The asprepared samples were characterized by XRD, UV-Vis-DRS, and SEM-EDX. The results revealed that the band gap energy absorption edge of as prepared nanocomposite samples was shifted to a longer wavelength as compared to ZnO and $Ta_2O_5$, and the 60 wt% ZnO/TaON nanocomposite exhibited the highest percentage (99.2 %) of degradation of Rh. B and the highest reaction rate constant ($0.0137min^{-1}$) in 4 h which could be attributed to the enhanced absorption of the ZnO/TaON nanocomposite photocatalyst. Hence, these results suggest that the ZnO/TaON nanocomposite exhibits enhanced photocatalytic activity for the degradation of rhodamine B under simulated solar light irradiation in comparison to the commercial ZnO, $Ta_2O_5$, and TaON.

  • PDF

Synthesis of Nano-size Aluminum Nitride Powders by Chemical Vapor Process (화학기상공정을 이용한 나노질화알루미늄 분말 합성)

  • Pee, Jae-Hwan;Park, Jong-Chul;Kim, Yoo-Jin;Hwang, Kwang-Taek;Kim, So-Ryong
    • Journal of Powder Materials
    • /
    • v.15 no.6
    • /
    • pp.496-502
    • /
    • 2008
  • Aluminum nitride (AlN) powders were prepared by the chemical vapor synthesis (CVS) process in the $AlCl_{3}-NH_{3}-N_{2}$ system. Aluminum chloride ($AlCl_3$) as the starting material was gasified in the heating chamber of $300^{\circ}C$. Aluminum chloride gas transported to the furnace in $NH_{3}-N_{2}$ atmosphere at the gas flow rate of 200-400ml/min. For samples synthesized between 700 and $1200^{\circ}C$, the XRD peaks corresponding to AlN were comparatively sharp and also showed an improvement of crystallinity with increasing the reaction temperature. In additions, the average particle size of the AlN powders decreased from 250 to 40 nm, as the reaction temperature increased.