• 제목/요약/키워드: Nitric Oxide formation

검색결과 268건 처리시간 0.029초

Influence of the Cyclic Parameters on the Nitric Oxide Formation in the diesel Engine

  • ;이창식
    • 한국자동차공학회논문집
    • /
    • 제6권1호
    • /
    • pp.27-35
    • /
    • 1998
  • This study describes the influence of combustion parameters on the nitric oxide emission, such as injection timing, air flow rate, injected amount of fuel, and compression ratio of engine. In order to determine the influence factors on the nitric oxide emission, the experiment were investigated with various parameters of engine cycle. According to the results of this study, the retardation of injection timing and the increases of airflow rate, and the decreases of fuel injection amount reduce the nitric oxide concentration in the exhaust emissions. Also, the increases of compression ration of engine increase in the concentration of nitric oxide formation in the combustion chamber. The results of this study give a guideline to decrease the nitric oxide formation by using the simulation program.

  • PDF

디젤분진이 폐포대식세포에서 nitric oxide의 생성과 inducible nitric oxide synthase의 발현 및 nitrotyrosilated-protein의 형성에 미치는 효과 (The Effects of Diesel Exhaust Particles on the Alveolar Macrophages for Inducible Nitric Oxide Synthase Induction and Nitric Oxide with Nitrotyrosilated-protein Formation)

  • 임영;최명옥;이권행;김경아;김길수;이명헌;리천주;이수진;최농훈
    • 생명과학회지
    • /
    • 제16권2호
    • /
    • pp.192-198
    • /
    • 2006
  • 본 연구에서는 DEP의 노출이 새로운 호흡기계 질환 유발의 가능성과 호흡기계의 염증성인자로 잘 알려진 lipopolysaccharide (LPS)의 역할에 어떠한 영향을 미치는 지를 확인하고자 폐에서 염증성 반응 시 생성이 증가하는 것으로 알려진 Nitric Oxide (NO)의 형성과 NO의 생성에 관련된 효소인 inducible nitric oxide synthase (iNOS) 및 NO에 의하여 형성되는 것으로 알려진 nitrotyrosilated-protein을 폐포 대식세포를 통해 분석하였다. 폐포대식세포에 DEP를 농도 별로 단독 처리하였을 때와 동일한 농도에서 배양시간을 달리하였을 때는 NO가 생성되지 않았으나 DEP와 함께 LPS를 처리하였을 때는 LPS를 단독으로 처리했을 때보다. 유의성이 있게 증가함을 확인할 수 있었다. 또한 NO의 생성에 관련된 효소인 iNOS 및 NO에 의하여 형성되는 것으로 알려진 nitrotyrosilated-protein 발현의 정도를 면역화학염색과 Western analysis로 확인할 수 있었다. DEP는 폐포대식세포에서 직접적으로 NO생성에 영향을 미치지 않았으며, NO를 생성하는 iNOS나 nitrotyrosilated-protein의 발현에도 영향을 주지 않았으나 세균성 염증인자의 한 종류인 LPS가 NO를 형성하는 데에는 통계학적인 상승효과가 있었다. 결론적으로 본 연구에서는 염증성질환의 환자에서 DEP의 흡입은 간접적으로 NO를 형성하는데 영향을 미쳐 질환을 악화시킬 것으로 판단한다.

전기점화기관의 연소실 온도구배를 고려한 배출물 농도예측 (The Prediction of Emission Concentrations in SI Engine Considering Temperature Gradient in Combustion Chamber)

  • 신동신;김응서
    • 오토저널
    • /
    • 제7권3호
    • /
    • pp.83-93
    • /
    • 1985
  • The prediction of emission concentrations in a 4cycle spark ignition engine was made by considering nonuniform model with thermodynamics, chemical equilibrium and kinetic mechanism of nitric oxide. Calculation of this model shows that a temperature difference of the order of 500K can be established across he cylinder. Results of the kinetic calculation of nitric oxide show that the temperature gradient across the cylinder has a profound effect on the nitric oxide formation. The predicted values for nitric oxide, carbon dioxide and carbon monoxide agree with measured ones for a variety of equivalence ratio.

  • PDF

Synergistic Effect of Nitrogen and Molybdenum on Localized Corrosion of Stainless Steels

  • Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • 제9권1호
    • /
    • pp.20-28
    • /
    • 2010
  • According to the bipolar model, ion selectivity of some species in the passive film is important factor to control the passivation. An increase of cation selectivity of outer layer of the passive film can stabilize the film and improves the corrosion resistance. Therefore, the formation and roles of ionic species in the passive film should be elucidated. In this work, two types of solution (hydrochloric or sulfuric acid) were used to test high N and Mo-bearing stainless steels. The objective of this work was to investigate the formation of oxyanions in the passive film and the roles of oxyanions in passivation of stainless steel. Nitrogen exists as atomic nitrogen, nitric oxide, nitro-oxyanions (${NO_x}^-$), and N-H species, not nitride in the passive film. Because of its high mobility, the enriched atomic nitrogen can act as a reservoir. The formation of N-H species buffers the film pH and facilitates the formation of oxyanions in the film. ${NO_x}^-$ species improve the cation selectivity of the film, increasing the oxide content and film density. ${NO_x}^-$ acts similar to a strong inhibitor both in the passive film and at active sites. This facilitates the formation of chromium oxide. Also, ${NO_x}^-$ can make more molybdate and nitric oxide by reacting with Mo. The role of Mo addition on the passivation characteristics of stainless steel may differ with the test environment. Mo exists as metallic molybdenum, molybdenum oxide, and molybdate and the latter facilitates the oxide formation. When nitrogen and molybdenum coexist in stainless steel, corrosion resistance in chloride solutions is drastically increased. This synergistic effect of N and Mo in a chloride solution is mainly due to the formation of nitro-oxyanions and molybdate ion. Oxyanions can be formed by a 'solid state reaction' in the passive film, resulting in the formation of more molybdate and nitric oxide. These oxyanions improve the cation selectivity of the outer layer and form more oxide and increase the amount of chromium oxide and the ratio of $Cr_2O_3/Cr(OH)_3$ and make the film stable and dense.

영지버섯 다당체의 Nitric Oxide 생성능 및 생성기전 연구 (Nitric Oxide Production Ability and its Formation Mechanisms in Macrophage TIB 71 Cell Line by Polysaccharide Extracted from Ganoderma lucidum)

  • 김성환
    • 한국식품영양과학회지
    • /
    • 제27권2호
    • /
    • pp.333-337
    • /
    • 1998
  • This study was carried out to get infomation on the nitric oxide production ability and its formation mechanisms of polysaccharides extracted from Ganoderma lucidum(PSG) by using murine macrophage cell line. The cultured mycelial cells of Ganoderma lucidum were extracted by alkali, and than neutralized by acid. The extract were passed through the column of DEAE cellulose for more purification. The neutral fraction was concentrated and precipitated with 95% ethanol. The precipitate was lyophilized and PSG was obtained. The immunomodulating effects of PSG on macrophage were performed by using murine macrophage cell line ATCC TIB 71 cells with PSG 0.5mg. PSG alone could not induce the production of nitrite, but it had a significant potential effect on nitrite secretion when the cells were primed and triggered with BCG and Interferon(IFN)-${\gamma}$. Also it was prominent by using calcium channel blocker(verapamil) and adenylate cyclase activator(forskolin).

  • PDF

LPS로 유도한 대식세포에서 Nitric Oxide 생성을 저해하는 쉽싸리 성분의 분리 (Isolation of the Constituent Inhibiting Nitric Oxide formation from Lycopus lucidus in LPS-induced Macrophage Cells)

  • 박희준
    • 한국자원식물학회지
    • /
    • 제32권4호
    • /
    • pp.264-269
    • /
    • 2019
  • 쉽싸리(L. lucidus)가 가지는 효능의 하나로 알려진 항염증효과의 활성물질을 파악하기 위하여 본 연구를 수행하였다. 항염효과는 LPS로 활성화한 macrophage 264.7이 생산하는 NO의 감소효과를 측정함으로써 평가하였다. 쉽싸리 추출물에서 얻은 비극성 분획물인 $CHCl_3$ 분획물은 농도의존적으로 현저히 NO 생산을 감소시켰다. 이에 비해 극성 분획물인 BuOH 분획물은 그 효과가 약하였다. Silica gel column chromatography에 의해 이 $CHCl_3$ 분획물로부터 주요 화합물인 ursolic acid를 분리하고 분광학적 방법으로 동정할 수 있었다. 효과가 약하였던 BuOH 분획물로부터 diaion HP-20 column chromatography와 sephadex LH-20 column chromatography로 이 분획의 주요 화합물인 rosmarinic acid를 분리하고 역시 분광학적 방법으로 동정하였다. Ursolic acid는 농도의존적으로 NO 생산을 억제하였으나 rosmarinic acid는 그 효과가 상대적으로 약하였다. 이러한 사실로부터 쉽싸리의 항염효과는 주로 ursolic acid의 존재 때문임을 알 수 있었다.

EFFECTS OF NITRIC OXIDE SYNTHASE INHIBITORS ON OSTEOCLAST-LIKE CELL FORMATION

  • Ahn, Seung-Kyu;Kim, Jung-Kun;Cha, Kyung-Suk
    • 대한치과교정학회지
    • /
    • 제25권6호
    • /
    • pp.715-722
    • /
    • 1995
  • Orthodontic tooth movement in response to orthodontic force results from actions of osteoclasts and osteeoblasts in the cell level. Convincing evidence has now been provided to support the view that osteoclasts are derived from mononuclear cells that originate in the bone marrow or other hematopoietic organs and they migrate to the bones via vascular routes. Nitric oxide(NO), which accounts for the biological properties of endothelium-derived relaxing factor(EDRF), is the endogenous stimulator of soluble guanylate cylase. The discovery of the formation of nitric oxide(NO) from L-arginine in mammalian tissues and its biological roles has, in the last 7 years, thrown new light onto many areas of research. Data from experiments in vitro showed that N-metyl-L-arginine(L-NMA) and L-nitro-L- arginine(L-NAME) are competitive inhibitors of nitric oxide synthase. This study suggest that the multinucleated cells in our culture have characteristics of osteoclasts and that the potential bone cell activity of nitric oxide in vitro may be mediated in part by stimulation of marrow mononuclear cells to form osteoclast-like cells. Bone marrow cells were obtaineed from tibia of 19-days old chick embryo. After sacrifice, tibia was quickly dissected and the bone were then split to expose the medullary bone. The cells were attached for 4 hours and the nonadherent cells were collected. Marrow cells weere cultured in 96-well plate in medium 199. To examine the number of TRAP-positive multinucleated cells(MNCs), $10^{-8}\;M\;Vit=D_3$ and various concentration of L-NMA and L-NAME weere added at the beginning of cultures and with each medium change. After 7 days of culture. tartrate-resistant acid phosphatase(TRAP) staining was performed for microscopic evaluation. Cells haying more than three nuclei per cell were counted as MNCs. The obsrved results were as follows;1. 1,25-dihydroxyvitamine $D_3$ stimulated the osteoclast-like multinucleated cells in cultures of chick embryo bone marrow. 2. Nitric oxide synthase inhibitors(NOSI ; N-NMA, N-NAME) stimulated the osteoclast-like cells in cultures of chick embry bone marrow. 3. 1,25-dihydroxyvitamine$D_3$ and nitric oxide synthase inhibitors did not appear to have additive effect on the generation of TRAP-positive MNCs. These results suggest that nitric oxide synthase inhibitors may stimulate the osteoclast-like multinucleated cell formation and fusion in cultures of chick bone marrow.

  • PDF

B16 흑색종세포에서 로바스타틴에 의한 멜라닌 합성 촉진효과에 미치는 산화질소의 역할 (Role of Nitric Oxide in the Lovastatin-Induced Stimulation of Melanin Synthesis in B16 Melanoma Cells)

  • 이용수
    • 약학회지
    • /
    • 제57권6호
    • /
    • pp.388-393
    • /
    • 2013
  • Previously, we have reported that lovastatin, an inhibitor of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, increased melanin synthesis through intracellular $Ca^{2+}$ release in B16 cells. In this study we investigated the possible involvement of nitric oxide (NO) in the mechanism of lovastatin-induced melanogenesis. Lovastatin elevated NO formation in a dose-dependent manner. Treatment with mevalonate, farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP), precursors of cholesterol, did not significantly alter the lovastatin-induced NO production, suggesting that inhibition of cholesterol metabolism may not be involved in the mechanism of this action of lovastatin. Both NO formation and melanogenesis induced by lovastatin was significantly suppressed by treatment with $N^G$-nitro-L-arginine methyl ester (L-NAME) and 2-(4-carboxy-2-phenyl)-4,4,5,5-tetramethylinidazoline-1-oxyl-3-oxide (cPTIO), an inhibitor of NO synthase and a NO scavenger, respectively. The lovastatin-induced NO production was significantly affected not by EGTA, an extracellular $Ca^{2+}$ chelator, but by an intracellular $Ca^{2+}$ chelator (BAPTA/AM) and intracellular $Ca^{2+}$ release blockers (dantrolene and TMB-8). Taken together, these results suggest that lovastatin may induce melanogenesis through NO formation mediated by intracellular $Ca^{2+}$ release in B16 cells. These results further suggest that lovastatin may be a good candidate for the therapeutic application of various hypopigmentation disorders.

목단피 정유에서 분리된 Paeonol과 그 유도체 Methylpaeonol의 in vitro 항염효과 (In vitro Atiinflmmatory Activity of Paeonol from the Essential Oil and Its Derivative Methylpaeonol)

  • 최무영;박희준
    • 생약학회지
    • /
    • 제36권2호통권141호
    • /
    • pp.116-120
    • /
    • 2005
  • Paeonol (2-hydroxy-5-methoxyacetophenone) obtained by silica gel column chromatography of the essential oil extracted from Paeonia moutan (Paeoniaceae) was methylated by dimethylsulfate to yield methylpaeonol (2,5-di-O-methylacetophenone). Both compounds inhibited nitric oxide (NO) foundation in lipopolysaccharide-induced macrophage RAW 264.7 cells in nitrite assay. In the western blotting assay, it was shown that both compounds also decreased inducible nitric oxide synthase (iNOS)-and cyclooxygenase-2(COX-2) formation. Methylpaeonol produced more potently inhibited NO-, iNOS and COX-2 formation in the assays than paeonol. These results suggest that paeonol is in part responsible for anti-inflammatory activity of Paeonia moutan, and that synthesis of paeonol derivatives may produce a promising candidate for andtiifnalmmatory agent.

Isolation of Constituents with Nitric Oxide Synthase Inhibition Activity from Phryma leptostachya var. asiatica

  • Kim, Donghwa;Lee, Sang Kook;Park, Kyoung-Sik;Kwon, Na-Yun;Park, Hee-Juhn
    • Natural Product Sciences
    • /
    • 제25권1호
    • /
    • pp.34-37
    • /
    • 2019
  • Phytochemical studies were performed to identify the active principles of Phryma leptostachya var. asiatica (Phyrymaceae) for anti-inflammation. The anti-inflammatory activity was assessed by measuring the inhibition rate on nitric oxide (NO) formation in lipopolysaccharide (LPS)-activated macrophage 264.7 cells. Of the five compounds including ursolic acid, phrymarolin I, harpagide, haedoxancoside A, and acteoside isolated from this plant, ursolic acid showed the most prominent inhibition of NO formation. Therefore, ursolic acid may be the anti-inflammatory principle of Phryma leptostachya var. asiatica.