• Title/Summary/Keyword: Nitric Oxide(No)

Search Result 2,950, Processing Time 0.025 seconds

A Curcuminoid and Two Sesquiterpenoids from Curcuma zedoaria as Inhibitors of Nitric Oxide Synthesis in Activated Macrophages

  • Jang, Mi-Kyung;Lee, Hwa-Jin;Kim, Ji-Sun;Ryu , Jae-Ha
    • Archives of Pharmacal Research
    • /
    • v.27 no.12
    • /
    • pp.1220-1225
    • /
    • 2004
  • The overproduction of nitric oxide (NO) by inducible nitric oxide synthase (iNOS) is known to be responsible for vasodilation and hypotension observed in septic shock and inflammation. Inhibitors of iNOS, thus, may be useful candidates for the treatment of inflammatory diseases accompanied by overproduction of NO. In the course of screening oriental anti-inflammatory herbs for the inhibitory activity of NO synthesis, a crude methanolic extract of Curcuma zedoaria exhibited significant activity. The activity-guided fractionation and repetitive chromatographic procedures with the EtOAc soluble fraction allowed us to isolate three active compounds. They were identified as 1,7-bis (4-hydroxyphenyl)-1,4,6-heptatrien-3-one (1), procurcumenol (2) and epiprocurcumenol (3) by spectral data analyses. Their concentrations for the 50% inhibition of NO production $(IC_{50})$ in lipopolysaccharide (LPS)-activated macrophages were 8, 75, 77 ${\mu}M$, respectively. Compound 1 showed the most potent inhibitory activity for NO production in LPS-activated macrophages, while the epimeric isomers, compound 2 and 3 showed weak and similar potency. Inhibition of NO synthesis by compound 1 was very weak when activated macrophages were treated with 1 after iNOS induction. In the immunoblot analysis, compound 1 suppressed the expression of iNOS in a dose-dependent manner. In summary, 1,7-bis (4-hydroxyphenyl)-1,4,6-heptatrien-3-one from Curcuma zedoaria inhibited NO production in LPS-activated macrophages through suppression of iNOS expression. These results imply that the traditional use of C. zedoaria rhizome as anti-inflammatory drug may be explained at least in part, by inhibition of NO production.

Potentiation of Inducible Nitric Oxide Expression by Indomethacin in Carageenin-treated Rat Paw Inflammation (Carrageenin으로 흰쥐 발 염증으로 Indomethacin에 의한 유도성 nitric oxide synthase의 발현증가)

  • 원혜영;강건욱;김영미;김낙두
    • YAKHAK HOEJI
    • /
    • v.43 no.2
    • /
    • pp.214-220
    • /
    • 1999
  • Present study was aimed to examine whether indomethacin affected the production of NO in the rat paw exudate by carrageenin. Paw edema and nitrite/nitrate levels in the paw exudate were maximal after 4 h and remained elevated up to 10 h, whereas indomethacin (10 mg/kg, po) significantly inhibited the carrageenin-induced paw edema and levels of nitrate in the paw exudate. However, paw edema and nitrite/nitrite levels were increased thereafter for 10 h. Indomethacin also enhanced the expression of iNOS mRNA and protein 4 h after carrageenin infection. Indomethacin inhibited the level of $PGE_2$ in the paw exudate in a time-dependent manner. These results suggest the possibility that indomethacin may potentiate expression of iNOS and subsequently increase nitrite/nitrate level in the late phase of carrageenin-induced rat paw inflammation possibly by suppressing cycloxygenase activity.

  • PDF

Identification and Characterization of Nitric Oxide Synthase in Salmonella typhimurium

  • Choi, Don-Woong;Oh, Hye-Young;Hong, Sung-Youl;Han, Jeung-Whan;Lee, Hyang-Woo
    • Archives of Pharmacal Research
    • /
    • v.23 no.4
    • /
    • pp.407-412
    • /
    • 2000
  • The presence of the nitric oxide synthase (NOS) enzyme from Salmonella typhimurium (S. typhimurium) was identified by measuring radiolabeled L-$[^3H]$citrulline and NO, and Western blot analysis. NOS was partially purified by both Mono Q ion exchange and Superose 12HR size exclusion column chromatography, sequentially. The molecular weight of NOS was estimated to be 93.3 kDa by Western blot analysis. The enzyme showed a significant dependency on the typical NOS cofactors; an apparent Km for L-arginine of 34.7 mM and maximum activity between $37^{\circ}C$ and $43^{\circ}C$. The activity was inhibited by NOS inhibitors such as aminoguanidine and $N^{G}$ $N^{G}$-dimethyl-L-arginine. taken together, partially purified NOS in S. typhimurium is assumed to be a different isoform of mammalian NOSs.OSs.

  • PDF

Nitric Oxide Detection of Fe(DTC)3-hybrizided CdSe Quantum Dots Via Fluorescence Energy Transfer

  • Chang-Yeoul, Kim
    • Journal of Powder Materials
    • /
    • v.29 no.6
    • /
    • pp.453-458
    • /
    • 2022
  • We successfully synthesize water-dispersible CTAB-capped CdSe@ZnS quantum dots with the crystal size of the CdSe quantum dots controlled from green to orange colors. The quenching effect of Fe(DTC)3 is very efficient to turn off the emission light of quantum dots at four molar ratios of the CdSe quantum dots, that is, the effective covering the surface of quantum dots with Fe(DTC)3. However, the reaction with Fe(DTC)3 for more than 24 h is required to completely realize the quenching effect. The highly quenched quantum dots efficiently detect nitric oxide at nano-molar concentration of 110nM of NO with 34% of recovery of emission light intensity. We suggest that Fe(DTC)3-hybridized CdSe@ZnS quantum dots are an excellent fluorescence resonance energy transfer probe for the detection of nitric oxide in biological systems.

Protective Effect of Nitric Oxide against Oxidative Stress under UV-B Radiation in Maize Leaves (UV-B 조사시 옥수수 잎의 산화적 스트레스에 대한 Nitric Oxide의 보호효과)

  • Kim, Tae-Yun;Jo, Myung-Hwan;Hong, Jung-Hee
    • Journal of Environmental Science International
    • /
    • v.19 no.12
    • /
    • pp.1323-1334
    • /
    • 2010
  • The effect of nitric oxide (NO) on antioxidant system and protective mechanism against oxidative stress under UV-B radiation was investigated in leaves of maize (Zea mays L.) seedlings during 3 days growth period. UV-B irradiation caused a decrease of leaf biomass including leaf length, width and weight during growth. Application of NO donor, sodium nitroprusside (SNP), significantly alleviated UV-B stress induced growth suppression. NO donor permitted the survival of more green leaf tissue preventing chlorophyll content reduction and of higher quantum yield for photosystem II than in non-treated controls under UV-B stress, suggesting that NO has protective effect on chloroplast membrane in maize leaves. Flavonoids and anthocyanin, UV-B absorbing compounds, were significantly accumulated in the maize leaves upon UV-B exposure. Moreover, the increase of these compounds was intensified in the NO treated seedlings. UV-B treatment resulted in lipid peroxidation and induced accumulation of hydrogen peroxide ($H_2O_2$) in maize leaves, while NO donor prevented UV-B induced increase in the contents of malondialdehyde (MDA) and $H_2O_2$. These results demonstrate that NO serves as antioxidant agent able to scavenge $H_2O_2$ to protect plant cells from oxidative damage. The activities of two antioxidant enzymes that scavenge reactive oxygen species, catalase (CAT) and ascorbate peroxidase (APX) in maize leaves in the presence of NO donor under UV-B stress were higher than those under UV-B stress alone. Application of 2-(4-carboxyphenyl)-4, 4, 5, 5-tetramethylimidazoline-1-oxyl-3- oxide (PTIO), a specific NO scavenger, to the maize leaves arrested NO donor mediated protective effect on leaf growth, photosynthetic pigment and free radical scavenging activity. However, PTIO had little effect on maize leaves under UV-B stress compared with that of UV-B stress alone. $N^{\omega}$-nitro-L-arginine (LNNA), an inhibitor of nitric oxide synthase (NOS), significantly increased $H_2O_2$ and MDA accumulation and decreased antioxidant enzyme activities in maize leaves under UV-B stress. This demonstrates that NOS inhibitor LNNA has opposite effects on oxidative resistance. From these results it is suggested that NO might act as a signal in activating active oxygen scavenging system that protects plants from oxidative stress induced by UV-B radiation and thus confer UV-B tolerance.

Antioxidant and Anti-inflammatory Effect of Angelica Tenuissima in IFN-${\gamma}$/LPS-stimulated Peritoneal Macrophage (IFN-${\gamma}$와 LPS로 자극된 쥐의 복강 대식세포에서 고본(藁本) 메탄올 추출물의 항염증 효과)

  • Lee, Se-Yeoun;Park, Ho-Jun;Cha, Dong-Seok;Shin, Tae-Yong;Na, Ho-Jeong;Moon, Woo-Sung;Kang, Yang-Gyu;Jeon, Hoon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.22 no.6
    • /
    • pp.1549-1556
    • /
    • 2008
  • The objective of this study were to evaluate the antioxidant activity and the anti-inflammatory effects of Angelica tenuissima (AT) which has been used widely as a traditional medicine. The antioxidant activities of AT was tested by DPPH radical scavenging, superoxide anion scavenging and nitric oxide scavenging. AT showed strong antioxidant activity in all experiment. In macrophages nitric oxide (NO) is released as an inflammatory mediator and has been proposed to be an important modulator of many pathophysiological conditions and high concentratin of NO is produced by inducible nitric oxide synthase (iNOS). In this study we have examined the inhibition effects of NO by 85% methanol extracts of AT in mouse (C57BL/6) peritoneal macrophage. AT (100, 1000 ${\mu}g/m{\ell}$) suppressed nitric oxide production and iNOS expression without any notable cytotoxicity and it also inhibited the expression of inflammatoryenzymes like cyclooxygenase-2 (COX-2). These data suggest that 85% methanol extracts of AT may possibly be used as antioxidant and anti-inflammatory agent.

Anti-inflammatory effect of Distylium racemosum leaf biorenovate extract in LPS-stimulated RAW 264.7 macrophages cells (LPS로 유도된 RAW 264.7 세포에 대한 조록나무 잎 Biorenovation 추출물의 항염증 활성)

  • Hong, Hyehyun;Lee, Kyung-Mi;Park, Taejin;Chi, Won-Jae;Kim, Seung-Young
    • Journal of Applied Biological Chemistry
    • /
    • v.64 no.4
    • /
    • pp.375-382
    • /
    • 2021
  • Biorenovation is a microbial enzyme-based structural modification of component compounds in natural products and synthetic compounds including plant extracts with the potential benefits of improved biological activities compared with its reaction substrates. In this study, we investigated the anti-inflammatory activity of Distylium racemosum leaf extract and D. racemosum leaf biorenovation extract (DLB). As a result, DLB inhibited nitric oxide, prostaglandin E2, and inflammatory cytokines including tumor necrosis factor-α, interleukin-6, interleukin-1β at non-toxic concentrations. In addition, DLB significantly inhibited inducible nitric oxide synthase and cyclooxygenase-2 on LPS-treated RAW 264.7 macrophages. Based on these results, we suggest that the DLB could be used as a potent anti-inflammatory agents. It also suggests that the application of biological evolution has potential usefulness to increase the practical value of natural products.

The effects of endurance training and L-arginine supplementation on nitric oxide production, muscle glycogen concentration, and endurance performance

  • Choi, Sung-Keun;Park, Sok;Lee, Cheon Ho
    • Korean Journal of Exercise Nutrition
    • /
    • v.16 no.1
    • /
    • pp.51-59
    • /
    • 2012
  • The purpose of this study was to examine the effects of endurance training and prolonged L-arginine supplementation on blood glucose, blood insulin, muscle glycogen, muscle glycogen synthase (GS), muscle nitric oxide (NO), muscle nitric oxide synthase (NOS), endurance performance. We equally divided 36 Sprague-Dawley mice to be distributed into control group, L-NMMA treated group and L-arginine treated group. The L-arginine treated group and L-NMMA treated group consumed 10 mg/kg/day of L-arginine and 5 mg/kg/day of L-NMMA for 6 weeks period. Mice of control group, L-arginine treated group, and L-NMMA treated groups performed swimming exercise training for 60 min once a day, 5 days per week for 6 weeks. Blood glucose had tendency to increase in L-arginine treated group than the control group, and insulin significantly increased in L-arginine treated group than the control group. L-arginine treated group showed significant increase in glycogen, GS, NO and NOS in the gastrocnemius muscle and soleus muscle compared to the control group. Whereas L-NMMA treated group showed the lowest glycogen, GS, NO and NOS in the gastrocnemius muscle and soleus muscle compared to control group and L-arginine treated group. Exhaustive swimming time had tendency to increase in L-arginine treated group compared to the value for control group. These reults indicate that endurance training and prolonged L-arginine supplementation appear to be effective in exhancing nitric oxide production, glycogen concentration and endurance performance.

Purification of Nitric Oxide Synthase from Bovine Pancreas

  • Nam, Suk-Woo;Seo, Dong-Wan;Lee, Young-Jin;Sung, Dae-Seok;Han, Jung-Whan;Lee, Hyang-Woo
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1996.04a
    • /
    • pp.184-184
    • /
    • 1996
  • Nitric Oxide Synthase(NO synthase: EC.1.14.13.39)는 생체내에서 L-arginine을 기질로 하여 nitric oxide(NO)와 L-citrulline의 생성을 매개하는 효소로서 뇌, 간장, 신장, 체장등 대부분의 주요장기와 근육세포, 신경세포 등 거의 모든 조직에 분포하고 있다. NO synthase에 의해 생성되는 NO는 혈관이완작용, 신경전달 물질로서의 작용, 면역 담당세포에서의 세포 독작용 등 많은 생리현상에 중요한 역할을 하는 것으로 알려져 있다. 특히 체장에서는 췌외분비 기능의 항진에 있어 세포내 cGMP level의 변동이 NO와 연관된다는 사실에 주목하고 있으며 본연구실에서도 이에 관한 연구가 진행중이다. 따라서 본 연구에서는 소 췌조직의 100,000$\times$g cytosol을 효소원으로 하여 다음과 같이 NO synthase의 분리, 정제를 시행하였다. Ammonium sulfate로 30%(176g solid ammonium sulfate/$\ell$) 포화, 침전 후 2',5'-ADP agarose 및 calmodulin-agarose affinity chromatography를 연속적으로 시행하여 NO synthase를 분리하였으며 electrophoresis상에서 약 160kd의 분자량을 나타내었다.

  • PDF

Dual Effects of Nitric Oxide on the Large Conductance Calcium-activated Potassium Channels of Rat Brain

  • Lee, Ji-Eun;Kwak, Ji-Yeon;Suh, Chang-Kook;Shin, Jung-Hoon
    • BMB Reports
    • /
    • v.39 no.1
    • /
    • pp.91-96
    • /
    • 2006
  • Previously, we have shown that nitric oxide (NO) directly activates the Maxi-K channels. In the present study, we have investigated whether NO has prolonged effects on the Maxi-K channels reconstituted in lipid bilayer. Application of S-nitroso-N-acetyl-D, L-penicillamine (SNAP), a NO donor, induced an immediate increase of open probability (Po) of Maxi-K channel in a dose-dependent manner. When SNAP was removed from the cytosolic solution, the Po did not simply returned to, but irreversibly decreased to a level lower than that of the control Po. At 0.2 mM, (Z)-[N-(3-Ammoniopropyl)-N-(n-propyl)amino] diazen-1-ium-1,2-diolate (PAPA-NO), another NO donor, produced a similar increase of Po and decrease of Po upon washout. The increasing effects of SNAP on Po were not blocked by either 50 U/ml superoxide dismutase (SOD) or 2 mM N-ethylmaleimide (NEM) pre-treatments. However, NEM appears to be ineffective when applied after SNAP. These results suggest that NO can modulate Maxi-K channel via direct interaction and chemical modification, such as S-nitrosylation in the brain.