• Title/Summary/Keyword: Nitrate nitrogen contamination degree

Search Result 6, Processing Time 0.026 seconds

Evaluation of Nitrate Nitrogen Contamination Degree in Groundwater Wells, Jeju Island (제주도 지하수 관정 내 질산성질소 오염도 평가)

  • Song, Sung-Ho;Hwangbo, Dongjun;Jang, Ki-Young;Kim, Jin-Sung;Seo, Sang-Ki;Yang, Won-Seok
    • Journal of Soil and Groundwater Environment
    • /
    • v.26 no.4
    • /
    • pp.8-19
    • /
    • 2021
  • In this study, the evaluation standard for nitrate nitrogen contamination degree (WELCUP) was established using six factors that influence the groundwater quality in Jeju Island. To do this, weightings, ranges, and ratings were assigned for each factor and the relative possibility of nitrate nitrogen contamination degree was evaluated using WELCUP index for each well. As a result of calculating the WELCUP index using groundwater quality data of 5,112 wells in Jeju Island for 27 years (1993-2019), all 61 wells with the WELCUP index value higher than 100 are distributed in Daejung and Hangyung watershed with relatively large area of farmland in Jeju Island. In particular, as the ratio of private wells is more than 64%, it is necessary that systematic management is needed for private wells in terms of nitrate nitrogen contamination. Consequently, based on the results of applying the WELCUP evaluation standard, it is necessary to select the prioritization of nitrate nitrogen contamination pathways project for groundwater wells in Jeju Island.

Quantification and Evaluation of Groundwater Quality Grade by Using Statistical Approaches (통계적 분석 방법을 이용한 국가지하수수질측정망의 오염 등급 정량화 및 평가)

  • Yoon, Hee-Sung;Bae, Gwang-Ok;Lee, Kang-Kun
    • Journal of Soil and Groundwater Environment
    • /
    • v.17 no.1
    • /
    • pp.22-32
    • /
    • 2012
  • This study suggests a method to grade groundwater quality quantitatively using statistical approaches for evaluating the quality of groundwater in wells included in the Groundwater Quality Monitoring Network (GQMN). The proposed analysis method is applied to GQMN data from 2001 to 2008 for nitrate nitrogen, chloride, trichloroethylene, potential of hydrogen (pH), and electrical conductivity. The analysis results are obtained as groundwater quality grades of the groundwater representing each of the monitoring stations. The degree of groundwater contamination is analysed for water quality parameters, district, and usage. The results show that the degree of groundwater contamination is relatively high by nitrate nitrogen, bacteria and electrical conductivity and at Seoul, Incheon, Gwangju, Gyeonggido and Jeollado. The degree of contamination by nitrate nitrogen and trichloroethylene is especially high when the groundwater is used for agricultural and industrial water, respectively. It is evaluated that potable groudnwater in GQMN is significantly vulnerable to nitrate nitrogen and bacteria contamination.

Visualization and contamination analysis for groundwater quality of CDEWSF in Gwangju area using statistical method (통계적 기법을 이용한 광주지역 민방위비상급수용 지하수 수질 오염도 분석 및 시각화 연구)

  • Jang, Seoeun;Lee, Daehaeng;Kim, Jongmin;Kim, Haram;Jeong, Sukkyung;Bae, Seokjin;Cho, Younggwan
    • Analytical Science and Technology
    • /
    • v.31 no.3
    • /
    • pp.122-133
    • /
    • 2018
  • In this study, groundwater quality data measured for 11 years from 2006 to 2016 were analyzed statistically for 101 civil defense emergency water supply facilities (CDEWSF) in the Gwangju area. The contamination level was quantified into four grades by using excess drinking water quality standards, average concentration analysis, and tendency analysis results for each facility. On the basis of this approach, the groundwater contamination degree of each item was evaluated according to land use status, installation year, depth, and geological distribution. The contamination grade ratios, which were obtained by analyzing three contamination indicators (water quality exceeded frequency, average concentration analysis, and trend analysis) for 15 items on statistically significant of civil defense emergency water was relatively high, in the order of Turbidity (51.5 %) > Color (32.7 %) > Nitrate nitrogen (28.7 %) > Hardness (25.7 %). As a result of the contamination grade analysis, except for the items of Turbidity, Color, and Nitrate nitrogen, the contamination levels were distributed in various degrees from "clean (0)" to "seriously contaminated (3)." Regarding the contamination grade of 12 items, 25 % of the total were classified as "possibly contaminated (1)," and 75 % were rated "clean (0)." The four items (Turbidity, Color, Nitrate nitrogen, and Hardness) for which contamination indication rate were evaluated as "high" by the were visualized on a contamination map.

A Study on Pollution Conditions and Management of Sand Flooring Related to Animal Feces - Nitrogen Analysis Method Development - (동물 분변으로 인한 모래 바닥재의 오염실태 및 관리 방안에 관한 연구 - 질소분석방법개발 -)

  • Jeong, Won-Gu;Ha, Ji-Young;Oh, Geun-Chan;Huh, In-Ryang;Choi, Seung-Bong
    • Journal of Environmental Health Sciences
    • /
    • v.46 no.6
    • /
    • pp.646-654
    • /
    • 2020
  • Objectives: Users of parks or children's play facilities have pointed to pets' bowel movements as the most serious problem when using them. In prior studies, a very low detection rate of parasites (eggs) in sand flooring materials has been found. Even though feces have been identified, no parasites (eggs) have been detected. Method: A standard solution of nitrate nitrogen was used to verify the reliability of a new nitrogen analysis method. The linearity, precision, and accuracy of the nitrate nitrogen analysis method were verified. Using this method, the pollution distribution of the sand flooring material and the degree of pollution at each point were investigated. Results: As a result of the verification of the nitrogen analysis method, the linearity was found to be good at r2=0.999 when distilled water is mixed in a standard substance solution. The standard substance additive solution r2=0.968 was found to be good. Precision represented 0.01 to 0.06% RSD for peak height. The recovery rate was 92.4 to 104.0 percent, indicating high accuracy. According to the same method of analysis, the flooring material sand at a general amusement facility with the largest number of concealed spaces was nitrate nitrogen 6.1 times higher than at the entrance of the playground. Also, in a comparison between clean sand and sandy flooring, the average nitrogen concentration of the sand flooring material was 24.4-167 times higher than pure sand. Conclusions: As such, no parasites (eggs) were detected at all points under investigation, but the sand flooring was exposed to animal fecal contamination. Therefore, the management of nitrogenous components should allow accurate identification of animal fecal contamination so that the timing of sand replacement can be managed hygienically and safely.

Organic Enrichment and Pollution in Surface Sediments from Shellfish Farming in Yeoja Bay and Gangjin Bay, Korea (패류양식어장 밀집해역의 퇴적환경내 유기물 분포특성 -여자만과 남해 강진만-)

  • Choi, Minkyu;Kim, Hyung Chul;Hwang, Dong-Woon;Lee, In-Seok;Kim, Young-Sook;Kim, Ye-Jung;Choi, Hee-Gu
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.46 no.4
    • /
    • pp.424-436
    • /
    • 2013
  • Organic enrichment was investigated in surface sediments from the Yeoja and Gangjin Bays of Korea, which contain dense shellfish farms, in order to evaluate the contamination status and temporal changes in shellfish farming along these coasts. The degree of organic enrichment was determined using geochemical indicators (chemical oxygen demand, ignition loss, acid volatile sulfide, total organic carbon in sediments, and total nitrogen in sediments, ammonium and nitrate in pore water, and bioluminescence inhabitation for sediments). Temporal changes in organic enrichment conditions were detected by comparing our 2012 data to those previously reported from a survey conducted in 1999/2000. Organic enrichment was significantly higher in September than in May and July, in Gangjin Bay than in Yeoja Bay, and significantly higher in shellfish farms than in reference sites not used to culture shellfish. Ammonium concentrations in pore water were two orders of magnitude greater than nitrate concentrations, suggesting that these bays represent nitrogen-reducing environments.

Studies on Pollutant Concentrations in Ground Water and Their Behavior in Soils , Cheju Island. I. Changes in Nitrate-nitrogen Concentration in Ground-water near Hotel complexes and Business district During the Period form 1987 to 1992 (제주도 지하수중 오염물질의 농도와 토양중 그의 행동에 관한 연구 1. 호텔 및 상가주변에서의 지하수중 $NO_3-N$의 농도 변화 (1987-1992))

  • Hyun, Hae-Nam;Oh, Sang-Sil;Koh, Seung-Hak
    • Korean Journal of Environmental Agriculture
    • /
    • v.13 no.1
    • /
    • pp.19-30
    • /
    • 1994
  • This study was conducted to investigate the degree of ground water pollution used for drinking water in Cheju Island. Samples were collected monthly from 31 wells of 10 divided areas and were analyzed for $NO_3-N$, pH, $SO_4$, Cl and hardness from 1987 to 1992. $NO_3-N$ concentrations in the samples, with the exception of sample No.23, did not exceed the standard concentration of drinking-water(10mg/l). $NO_3-N$ concentrations at area 10, unpolluted area, ranged from <1.0 mg/l to just over 1.2 mg/l. However, samples from the business district of the area 8 showed the concentrations ranging from 5 mg/l in 1987 to 8.l mg/l in 1992 with a mean of 6.8 mg/l, about 5 times higher than those from the area 10. $NO_3-N$ concentration in sample No. 23 increased from 4 mg/l in 1987 to 12.6 mg/l in 1991. Average rate of increase in $NO_3-N$ in samples of No. 1, 2, 4, and 8 at area 8 was about 1.2mg/l per year in the study period. The ground water at area 1, 2, 3, 4, 5, 6, and 7 showed in the range of pH 7 to 8.1, being similar to area 10. However, pH at area 8 was in the range of 6.6 to 7.3, being lower than that in the other areas. Hardness at area 1, 2, 3, 4, 5, and 6 were in the range of 30 to 80 mg/l, being higher than that at area 10. Those at area 8 were the highest among all the other areas tested. The results of this study suggest that $NO_3-N$ contamination in ground water could be a problem at hotel complexes and business district in Cheju Island.

  • PDF