• Title/Summary/Keyword: Nitrate nitrogen

Search Result 1,006, Processing Time 0.037 seconds

Adsorption Characteristics of Nitrate-nitrogen by Carbonaceous Material Prepared from Oak (참나무 탄화물을 이용한 질산성질소의 흡착 특성)

  • Kim, Jeong-Ae;Cheong, Kyung-Hoon;Choi, Hyung-Il;Moon, Kyung-Do;Lee, Ho-Ryeong
    • Journal of Environmental Science International
    • /
    • v.20 no.2
    • /
    • pp.215-222
    • /
    • 2011
  • The adsorption behavior of nitrate nitrogen was investigated from aqueous solution using char prepared from oak chip. The removal rate of nitrate nitrogen was found to be dependent on temperature and it is increased as the temperature increase. Adsorption equilibrium data of nitrate nitrogen on oak char. reasonably fitted Langmuir and Freundlich isotherm models. The adsorption energy obtained from D-R model was 12.5 kJ/mole at $20^{\circ}C$ indicating an ion exchange process as primary adsorption mechanism. Thermodynamic parameters such as ${\Delta}G^o$, ${\Delta}H^o$, and ${\Delta}S^o$ were -23.76 kJ/mole, 26.1 kJ/mole and 89.7 J/K mole at $20^{\circ}C$, respectively, indicated that the nature of nitrate nitrogen adsorption is spontaneous and endothermic.

Optimum Level of Nitrogen Fertilizer Based on Content of Nitrate Nitrogen for Growing Chinese Cabbage in Green House (시설조건(施設條件)의 배추 재배(栽培) 토양(土壤)에서 질산태질소(窒酸態窒素) 검정(檢定)에 의한 질소실비량(窒素施肥量) 결정(決定))

  • Park, Hyo-Taek;Hong, Soon-Dal
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.33 no.6
    • /
    • pp.384-392
    • /
    • 2000
  • To establish N fertilizer recommended scheme for the Chinese cabbage cultivation in green house based on the soil test of nitrate nitrogen, relationship among the content of soil nitrate and fertilizer effects and fertilizer N use efficiency were investigated from nine soils which differed amount of nitrate nitrogen from $14mg\;kg^{-1}$ to$226mg\;kg^{-1}$. The amount of nitrate nitrogen in soil showed a positive correlation with the dry weight of chinese cabbage in the plot of no fertilization. When the fertilizer effects were calculated by difference between the plots of fertilization and no fertilization in the dry weight and the amount of N uptake, a negative correlation was obtained between the amount of nitrate nitrogen in soils and the fertilizer effects. There was also a negative correlation between the amount of nitrate nitrogen in soils and fertilizer use efficiency. Recommendation of application rate of nitrogen fertilizer based on content of $NO_3-N$ in soils was evaluated by the regression equation among the content of soil nitrate, fertilizer effects and fertilizer N use efficiency. Incase the content of $NO_3-N$ nitrogen in soil is more than $200mg\;kg^{-1}$, No N fertilization is recommended; However, The standard N fertilization($320kg\;ha^{-1}$) is recommended for the soils with less than $50mg\;kg^{-1}$. For the soils ranged from $50mg\;kg^{-1}$ to $200mg\;kg^{-1}$ in the amount of nitrate nitrogen, an equation has been developed in order to calculate the recommended amount of fertilizer N.

  • PDF

Effect of Nitrogen Fertilization and Agronomic Stage on Nitrate Accumulation and Forage Yield of Sorghum Sudangrass Hybrid (질소시비수준이 생육단계별 수단그라스계 교잡종의 질산염 축적 및 수량에 미치는 영향)

  • Yoon, C.;Choi, K.C.
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.19 no.1
    • /
    • pp.81-88
    • /
    • 1999
  • A field experiment with 200, 400 and $600kg{\cdot}N/ha/year$ application levels was carried out to study the nitrate nitrogen accumulation and forage yield of sorghum sudangrass hybrid(Xtragraze II) at Iksan College Farm in 1995. The nitrate nitrogen contents were increased by the application of nitrogen and decreased as the plant matured, then the accumulation of nitrate nitrogen started from 200kg application, and exceeded the safe level of ruminants at the level of 400kg application during the whole growing period. In the early stage of growth, nitrate nitrogen contents of sorghum sudangrass hybrid were increased by rainfall during the dry season, but these contents are almost kept constantly at the low level in the later stage of growth. Accumulation of nitrate nitrogen in the morning had a greater tendency than that of the afternoon. A sum exceeding $200kg{\cdot}N$ does not necessarily result in increase the amount of nitrate nitrogen in sorghum sudangrass hybrid.

  • PDF

A Study of Size Distribution of Sulfate and Nitrate in Urban Air (都市大氣中 黃酸鹽과 窒酸鹽 關한 硏究)

  • 신상은;김승학;김희강
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.2 no.1
    • /
    • pp.33-39
    • /
    • 1986
  • Particulate matter was collected by Andersen Air Sampler in the Seoul area during February-October, 1985, in order to investigate size distribution of sulfate and nitrate in aerosol, and conversion of sulfur dioxide to sulfate and that of nitrogen dioxide to nitrate. The size distribution of sulfate and nitrate had fine mode. The ratio of fine sulfate to total sulfate in aerosol and that of fine nitrate to total nitrate showed between 54.6% and 86%, and 55.7% and 95%, respectively, which presumably originated from gaseous reaction of sulfur dioxide and nitrogen dioxide in the atmosphere.

  • PDF

Removal of nitrogen and phosphorus of the secondary effluent by electro-coagulation (전기응집을 이용한 2차 유출수의 질소.인 제거 공정 연구)

  • Han, Song-Hee;Chang, In-Soung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.4
    • /
    • pp.579-589
    • /
    • 2012
  • To reduce extensive energy costs of the internal recycling for the purpose of denitrification in the advanced wastewater treatment, a post-treatment process using an electro-coagulation to treat nitrate in the secondary effluents is evaluated in this study. Removals of phosphorus and organics in the secondary effluents by the electro-coagulation were also evaluated to propose an alternative advanced wastewatert treatment process. A series of experiments of the electro-coagulation were carried out with the following 4 different samples: synthetic solution containing nitrate only, synthetic solution containing nitrate as well as phosphorus, secondary effluents from activated sludge cultivated in laboratory, and secondary effluents from real wastewater treatment plants. Removals of nitrate and phosphorus in the synthetic solution were 30 and 97 % respectively, which verified the feasibility of the process. Removals of nitrate, phosphorus and COD in the secondary effluents from the cultivated sludge in laboratory were 49, 90 and 19 % respectively. Removal efficiency of the total nitrogen, nitrrate, phosphorus and COD in the secondary effluent from real wastewater treatment plant were 50, 61, 98 and 80 % respectively. The removal of the total nitrogen was less than the nitrate as expected, which is due to the formation of ammonia nitrogen in the cathode. But the proposed scheme could be an energy saving and alternative process for the advanced wastewater treatment if further studies for the process optimization are carried out.

A Study on Nitrogen Metabolism of Lemnaceae: Assimilation of Nitrate and Ammonia in Spirodela polyrhiza and Lemna aequinoctialis (개구리밥과 식물의 질소대사에 관한 연구: 개구리밥(Spirodela polyrhiza)과 좀개구리밥(Lemna aequinoctialis)의 NO3-와 NH4-의 동화작용)

  • 장남기
    • Journal of Plant Biology
    • /
    • v.34 no.4
    • /
    • pp.253-260
    • /
    • 1991
  • Spirodela polyrhiza and Lemna aequinoctialis often occurred at the sites of high ammonium concentration and at the sites of high nitrate concentration, respectively. We investigated the different distribution between two species in relation to the type of nitrogen sources and their concentrations. Our experiments showed that L. aequinoctialis grew faster than S. polyrhiza in nitrate media with lower than 15 mM concentration. The nitrate uptake was also faster in L. aequinoctialis than in S. polyrhiza. However, neither differences in growth nor in uptake patterns between these two species were observed in ammonium media. Glutamine synthetase (GS), glutamate dehydrogenase (GDH) and glutamate synthetase (GOGAT) activities were higher in L. aequinoctialis. In particular, nitrate reductase activity (NRA) in L. aequinoctialis was 12.1 times as high as that in S. polyrhiza. These results showed that the two species responded varyingly to the types of nitrogen sources and their concentrations. Therefore, the difference in geographic distribution between the two species appeared to reflect the interspecific differences in enzyme activities and, subsequently, nitrogen absorption abilities.

  • PDF

Use of Nitrate-nitrogen as a Sole Dietary Nitrogen Source to Inhibit Ruminal Methanogenesis and to Improve Microbial Nitrogen Synthesis In vitro

  • Guo, W.S.;Schaefer, D.M.;Guo, X.X.;Ren, L.P.;Meng, Qingxiang
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.4
    • /
    • pp.542-549
    • /
    • 2009
  • An in vitro study was conducted to determine the effect of nitrate-nitrogen used as a sole dietary nitrogen source on ruminal fermentation characteristics and microbial nitrogen (MN) synthesis. Three treatment diets were formulated with different nitrogen sources to contain 13% CP and termed i) nitrate-N diet (NND), ii) urea-N diet (UND), used as negative control, and iii) tryptone-N diet (TND), used as positive control. The results of 24-h incubations showed that nitrate-N disappeared to background concentrations and was not detectable in microbial cells. The NND treatment decreased net $CH_4$ production, but also decreased net $CO_2$ production and increased net $H_2$ production. Total VFA concentration was lower (p<0.05) for NND than TND. Suppression of $CO_2$ production and total VFA concentration may be linked to increased concentration of $H_2$. The MN synthesis was greater (p<0.001) for NND than UND or TND (5.74 vs. 3.31 or 3.34 mg/40 ml, respectively). Nitrate addition diminished methane production as expected, but also increased MN synthesis.

Effect of Nitrogen Levels and Harvest Intervals on Dry Matter Yield of Barnyard Millet

  • Lee, Bae Hun;Choi, Ki Choon;Yang, Seung Hak;Oh, Mirae;Park, Hyung Soo
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.42 no.3
    • /
    • pp.176-182
    • /
    • 2022
  • The aim of this study was to investigate dry matter productivity and nitrate nitrogen content in the growth stages of barnyard millet (Echinochloa esculenta) cultivated for feed, which was treated with different nitrogen fertilization levels. An early variety of barnyard millet (cv. Shirohie) was used for the test, and the different treatments with nitrogen fertilizer were as follows: 50% (N-40 kg/ha, T1), 100% (N-80 kg/ha, reference amount, T2), 150% (N-120 kg/ha, T3), 200% (N- 160 kg/ha, T4), 250% (N-200 kg/ha, T5), and 300% (N-240 kg/ha, T6). Sowing was done on May 13, 2021 and plants were harvested for four stage; vegetative stage, elongation stage, heading stage, and milk stage. The length of the millet increased significantly as the amount of nitrogen fertilization increased during the harvest period (p<0.05), but the difference was insignificant during the milk stage (p>0.05). Moreover, barnyard millet dry matter yield increased significantly as the levels of nitrogen fertilization increased (p<0.05), but there was no significant difference in dry matter yield among nitrogen fertilization levels during the heading stage (p>0.05). Chlorophyll also was significantly higher in T5 (250%) at all harvesting times, whereas nitrate nitrogen content was highest at the vegetative stage, gradually decreased as growth progressed, and lowest at the milk stage. Finally, as the nitrogen fertilization levels increased, the nitrate nitrogen content was significantly higher in all treatment groups (p<0.05). Therefore, our results suggest that the most appropriate nitrogen fertilizer levels is between 150%-200%, considering the dry matter yield, feed ingredients and nitrate nitrogen content in barnyard millet for feed.

A Study on the Removal of Nitrate Nitrogens by Redox Reaction of Zinc Ball (아연볼의 산화·환원 반응을 통한 연속식 질산성질소 처리에 관한 연구)

  • Kim, Joon Hwan;Kim, Jong Hwa;Song, Ju Yeong
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.3
    • /
    • pp.487-494
    • /
    • 2017
  • Since nitrate nitrogen is quite stable in aqueous solution, considerable skill is required to remove it. Low concentrations of nitrate nitrogen are easily removed, while high concentrations of nitrate nitrogen are difficult to remove. This study is to show that nitrate nitrogen in the form of gaseous nitrogen can be removed by using zinc ball with a diameter of about 3mm and to test the removal characteristics of nitrate nitrogen under various reaction conditions. As a result of this study, the treatment efficiency of nitrate nitrogen by continuous treatment with zinc ball was about 80%. However, there is a problem that the wastewater must be maintained in an acidic atmosphere of about pH 2, and the treated wastewater must be neutralized and discharged.

Temporal Variations in Isotope Ratios and Concentrations of Nitrate-nitrogen in Groundwater as Affected by Chemical Fertilizer and Livestock Manure

  • Yoo, Sun-Ho;Choi, Woo-Jung;Han, Gwang Hyun;Park, Jung-Geun;Lee, Sang-Mo;Jin, Sheng-ai
    • Journal of Applied Biological Chemistry
    • /
    • v.42 no.4
    • /
    • pp.186-190
    • /
    • 1999
  • Isotope ratio ($^{15}N/^{14}N$) and nitrate-nitrogen concentration in groundwater were measured to investigate the effect of chemical fertilizer and livestock manure on temporal variations in nitrate-nitrogen concentration and to estimate the contribution of fertilizer and manure to groundwater contamination by nitrate. Four study wells from a rural area in Kyonggi province were selected. One well was located on an upper site from a livestock feedlot, and the others were situated at lower sites from the feedlot. The ${\delta}^{15}N$ values were analyzed by a stable isotope ratio mass spectrometer (Micromass, VG Optima IRMS). Reproducibility of the method and precision of the mass spectrometer were below 1.0 and 0.1‰, respectively Even though study wells were located at the same area, nitrate-nitrogen concentrations and ${\delta}^{15}N$ values differed and fluctuated during the sampling period. The ${\delta}^{15}N$ values of well located at upper site from the feedlot were extremely variable (-1.48~20.80‰). The ranges of ${\delta}^{15}N$ value of three wells situated at lower sites from the feedlot were 11.83~20.73 (ave. 16.11), 8.90~11.73 (ave.11.01), and 5.29~12.73‰ (ave. 8.21‰) with increasing distance from the feedlot. The average values of contribution proportion of nitrogen derived from livestock manure to nitrate-nitrogen in groundwater were 79% for the well closet to the feedlot, 44% for the well most distant from the feedlot, and 56% for the well in between the two wells.

  • PDF