• Title/Summary/Keyword: Night image

Search Result 271, Processing Time 0.028 seconds

Development and Design of the Optical System of a Night Scope (Night Scope 광학계의 설계 및 개발)

  • Lee, Dong-Hee;Lim, Yang-Moo
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.9 no.1
    • /
    • pp.11-17
    • /
    • 2004
  • We tried to design and manufacture a night scope which is used in the leisure sports field. The whole system consists of an IR light source part, an objective lens part, an intensifier tube part and an eye_piece lens part. We designed an objective lens part to the infinite object imaging optical-system with 80mm focal-length, 40mm effective-aperture and 14mm image-field-size of which the chromatic aberration is reduced by using materials of BK7 and FD4. The resolution of this system is about 25lines/mm at the 40% MTF value criterion. The eye_piece lens is adopted goods to be used commercially to save cost of production. The design technique which gets in this development will be utilized greatly in good developments of the dot, the sight and the day/night riflescope system at the hereafter.

  • PDF

Traffic Light Detection Method in Image Using Geometric Analysis Between Traffic Light and Vision Sensor (교통 신호등과 비전 센서의 위치 관계 분석을 통한 이미지에서 교통 신호등 검출 방법)

  • Choi, Changhwan;Yoo, Kook-Yeol;Park, Yongwan
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.10 no.2
    • /
    • pp.101-108
    • /
    • 2015
  • In this paper, a robust traffic light detection method is proposed by using vision sensor and DGPS(Difference Global Positioning System). The conventional vision-based detection methods are very sensitive to illumination change, for instance, low visibility at night time or highly reflection by bright light. To solve these limitations in visual sensor, DGPS is incorporated to determine the location and shape of traffic lights which are available from traffic light database. Furthermore the geometric relationship between traffic light and vision sensor is used to locate the traffic light in the image by using DGPS information. The empirical results show that the proposed method improves by 51% in detection rate for night time with marginal improvement in daytime environment.

A Study on Data Management Systems for Spatial Assessments of Road Visibilities at Night (야간도로 시인성에 대한 공간적 평가를 위한 자료관리체계 연구)

  • Woo, Hee Sook;Kwon, Kwang Seok;Kim, Byung Guk;Yoon, Chun Joo;Kim, Young Rok
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.22 no.4
    • /
    • pp.107-115
    • /
    • 2014
  • Visibility of the road influence the safe driving because it recognizes the obstacle on the road. In this paper, we propose a mobile data acquisition and processing system for evaluating road visibility at night. And it was converted efficiently with mobile images and archived for spatial analysis of road-visibilities at night. This was applied to the following techniques to the system. Low-power computing units, open an image processing library, GPU-based acceleration techniques and document database techniques, etc. And converting the RGB image to the YUV color system, which was integrated the brightness component and the spatial information. High performance Android devices were used to collect brightness data on roads and it was confirmed whether this prototype was to determine the spatial distribution of such acquisition and management systems for spatial-assessments of road visibility at night.

Control System of Traffic Signal by Image Processing at Night (영상처리를 이용한 야간 교통신호 제어시스템)

  • Shin, Ji-Hwan;Park, Mu-Hun
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.6
    • /
    • pp.697-702
    • /
    • 2018
  • Recently, the number of private cars has increased sharply due to the increase in national income. The sudden increase in the number of vehicles in limited territory has caused serious traffic congestion and the traffic congestion cost wasted on the road due to such traffic congestion is increasing every year. To solve this problem, we propose a traffic signal control system using image processing. In this paper, we use the camera installed at the intersection to measure the amount of traffic flowing in and out of each road simultaneously. We propose a traffic signal control system that can prevent traffic congestion before it happens. In the case of applying the traffic signal control system proposed in this paper to the daytime, the traffic volume could be measured accurately. However, the result of the experiment with the night-time general camera and the headlight with the infrared camera at the night-time of 72.8% was 86.6%.

DEVELOPMENT OF WIDE-FIELD IMAGING CAMERA FOR ZODIACAL LIGHT OBSERVATION

  • KWON S. M.;HONG S. S.;SHIN K. J.
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.4
    • /
    • pp.179-184
    • /
    • 2004
  • We have developed a wide-field imaging camera system, called WICZO, to monitor light of the night sky over extended period. Such monitoring is necessary for studying the morphology of interplanetary dust cloud and also the time and spatial variations of airglow emission. The system consists of an electric cooler a CCD camera with $60\%$ quantum efficiency at 500nm, and a fish-eye lens with $180^{\circ}$ field of view. Wide field imaging is highly desired in light of the night sky observations in general, because the zodiacal light and the airglow emission extend over the entire sky. This paper illustrates the design of WICZO, reports the result of its laboratory performance test, and presents the first night sky image, which was taken, under collaboration with Byulmaro Observatory, on top of Mt. Bongrae at Yongweol in January, 2004.

Real Time Vehicle Detection and Counting Using Tail Lights on Highway at Night Time (차량의 후미등을 이용한 야간 고속도로상의 실시간 차량검출 및 카운팅)

  • Valijon, Khalilov;Oh, Ryumduck;Kim, Bongkeun
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2017.07a
    • /
    • pp.135-136
    • /
    • 2017
  • When driving at night time environment, the whole body of transports does not visible to us. Due to lack of light conditions, there are only two options, which is clearly visible their taillights and break lights. To improve the recognition correctness of vehicle detection, we present an approach to vehicle detection and tracking using finding contour of the object on binary image at night time. Bilateral filtering is used to make more clearly on threshold part. To remove unexpected small noises used morphological opening. In verification stage, paired tail lights are tracked during their existence in the ROI. The accuracy of the test results for vehicle detection is about 93%.

  • PDF

Thermal Imaging Camera Development for Automobiles using Detail Enhancement Technique (디테일 향상 기법을 적용한 자동차용 열상카메라 개발)

  • Cho, Deog-Sang;Yang, In-Beom
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.3
    • /
    • pp.687-692
    • /
    • 2018
  • In this paper, the development of an automotive thermal imaging camera providing image information for ADAS (Advanced Driver Assist System) and autonomous vehicles is described and an improved technique to enhance the details of the image is proposed. Thermal imaging cameras are used in various fields, such as the medical, industrial and military fields, for the purpose of temperature measurement and night vision. In automobiles, they are utilized for night vision systems. For their utilization in ADAS and autonomous vehicles, appropriate image resolution and enhanced detail are required for object recognition. In this study, a $640{\times}480$ resolution thermal imaging camera that can be applied to automobiles is developed and the BDE (Block-Range Detail Enhancement) technique is applied to improve the details of the image. In order to improve the image detail obtained in various driving environments, the block-range values between the target pixel and the surrounding 8 pixels are calculated and classified into 5 levels. Then, different factors are added or subtracted to obtain images with high utilization. The improved technique distinguishes the dark part of the image by the resulting temperature difference of 130mK and shows an improvement in the fine detail in both the bright and dark parts of the image. The developed thermal imaging camera using the improved detail enhancement technique is applied to a test vehicle and the results are presented.

Vehicle extraction and tracking of stereo (스테레오를 이용한 차량 검출 및 추적)

  • Youn, Se-Jin;Woo, Dong-Min
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.2962-2964
    • /
    • 1999
  • We know the traffic information about the velocity and position of vehicle by extraction and tracking vehicle from continuosly obtained road image of camera. The conventional method of vehicle detection indicate increment of error due to headlight and taillight in night road image. This paper show such as vehicle detection of binary, Edge detection. amalgamation of image are applied to extract the vehicle, and Kalman filter is adaptive methods for tracking position and velocity of vehicle.

  • PDF

A Computer Vision-based Method for Detecting Rear Vehicles at Night (컴퓨터비전 기반의 야간 후방 차량 탐지 방법)

  • 노광현;문순환;한민홍
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.5 no.3
    • /
    • pp.181-189
    • /
    • 2004
  • This paper describes the method for detecting vehicles in the rear and rear-side at night by using headlight features. A headlight is the outstanding feature that can be used to discriminate a vehicle from a dark background. In the segmentation process, a night image is transformed to a binary image that consists of black background and white regions by gray-level thresholding, and noise in the binary image is eliminated by a morphological operation. In the feature extraction process, the geometric features and moment invariant features of a headlight are defined, and they are measured in each segmented region. Regions that are not appropriate to a headlight are filtered by using geometric feature measurement. In region classification, a pair of headlights is detected by using relational features based on the symmetry of a pair of headlights. Experimental results show that this method is very applicable to an approaching vehicle detection system at nighttime.

  • PDF