• Title/Summary/Keyword: Night High Temperature

Search Result 201, Processing Time 0.029 seconds

Effect of Temperature Variables on Growth and Inorganic Nutrient Contents of Codonopsis lanceolata

  • Kwon, Soo-Jeong;Seo, Dong-Yeon;Cho, Gab-Yeon;Lee, Moon-Soon;Boo, Hee-Ock;Woo, Sun-Hee;Kim, Hag-Hyun
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.61 no.2
    • /
    • pp.131-137
    • /
    • 2016
  • This study was conducted to investigate the effects of temperature and shade, which are basic environmental conditions, on growth, yield, inorganic components, and general components of Codonopsis lanceolata, in order to obtain basic data for improving yield capacity. In natural light, in the 15, 20, and $25^{\circ}C$ groups, the plant heights ranged between 218.9 cm and 223.9 cm, and there was no significant difference between groups. However, the leaf size was larger in shade, and the leaf area was significantly larger in the 15 and $30^{\circ}C$ groups. In natural light, root length and diameter were shorter and thinner when the temperature was higher, and growth was highly suppressed at $30^{\circ}C$. With regards to macroelements, the contents of Na, Mg, and P increased as temperature increased, regardless of the plant part; however, no constant tendency was observed in K and Ca according to temperature. The contents of Mg and Ca (from highest to lowest) were in the order leaf>stem>root, whereas the contents of Na, P, and K were in the order stem>leaf>root. Contents of general components varied according to temperature, and were highest at $30^{\circ}C$. While the plant height was increased under the constant $25^{\circ}C$+DIF (Difference between day and night temperature) condition, growth was suppressed in the -DIF group, in which the night temperature was higher than the day temperature, which suggests that a change in night temperature is one of the factors that affects the growth of C. lanceolata. As in the growth of the above-ground parts, fresh weight of the root was high in the constant $25^{\circ}C$ group and +DIF group. Notably, it was more than 2.5 times the fresh weights in the constant $15^{\circ}C$ group, constant $20^{\circ}C$ group, and -15 DIF group.

Characteristics of nocturnal maximum ozone and meteorological relevance in Pusan coastal area (부산 연안역의 야간 고농도 오존 발생 특성과 기상학적 관련성)

  • 전병일
    • Journal of Environmental Science International
    • /
    • v.8 no.3
    • /
    • pp.287-292
    • /
    • 1999
  • This study was performed to investigate the characteristics of nocturnal maxiumu ozone occurrence and the meteorological relevance using to hourly ozone data and meteorological data for 1995~1996 in Pusan coastal area. Kwangbokdong showed the highest occurrence of nocturnal maximum ozone as 36.9%, and Deokcheondong showed the lowest occurrence(9.2%) for research period in Pusan. The occurrence rates of nocturnal maximum ozone concentration were decreased toward land area. The low maximum temperature, high minimum temperature, low diurnal range, high relative humidity, high wind speed, high could amount, low sunshine and low radiation were closely related to the main meteorological characteristics occuring the nocturnal maximum concnetration of ozone. It was shown that normal daily variation of ozone concentration by strong photochemical reaction at the before day of nocturnal maximum ozone. The concnetration of nocturnal maximum ozone were occured by entrainment of ozone from the upper layer of developed mixing layer. There are no ozone sources near the ground at night, so that the nighttime ozone should be entrained from the upper layer by forced convection.

  • PDF

Surface Micro-Climate Analysis Based on Urban Morphological Characteristics: Temperature Deviation Estimation and Evaluation (도시의 지표형태학적 특성에 기반한 지면미기후 분석: 기온추정 및 평가)

  • Yi, Chaeyeon;An, Seung Man;Kim, KyuRang;Kwon, Hyuk-gi;Min, Jae-Sik
    • Atmosphere
    • /
    • v.26 no.3
    • /
    • pp.445-459
    • /
    • 2016
  • Air temperature deviation (ATD) is one of major indicators to represent spatial distribution of urban heat island (UHI), which is induced from the urbanization. The purpose of this study is to evaluate the accuracy of air temperature deviation about Climate Analysis Seoul (CAS) workbench, which had developed by National Institute Meteorological Science and TU Berlin. Comparison and correlation analysis for CAS ATD including meso-scale air temperature deviation, local-scale air temperature deviation, total air temperature deviation, surface heat flux deviation, cold air production deviation among meso-scale numerical modelling variable in 'Seoul Region', micro-scale numerical modelling in 'Detail Region', and CAS workbench variable using observation data in ground stations. Comparison between night time OBS ATD and CAS ATD show that have most close values. Most of observations ($dT_{max}$ and $dT_{min}$) have highly positive ($dT_{SHP}$, $dT_{CA}$, MD, TD, $f_{BS}$, $f_{US}$, $f_{WS}$, $h_B$) and negative ($f_{VS}$, $f_{TV}$, $h_V$, Z) correlations. However, CAS workbench needs further improvement of both observational framework and analytical framework to resolve the problems; (1) night time OBS ATD of has closer values in compare with at high rise mountain area and (2) correlations are very dependable to meteorological scale.

Prediction of Global Industrial Water Demand using Machine Learning

  • Panda, Manas Ranjan;Kim, Yeonjoo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.156-156
    • /
    • 2022
  • Explicitly spatially distributed and reliable data on industrial water demand is very much important for both policy makers and researchers in order to carry a region-specific analysis of water resources management. However, such type of data remains scarce particularly in underdeveloped and developing countries. Current research is limited in using different spatially available socio-economic, climate data and geographical data from different sources in accordance to predict industrial water demand at finer resolution. This study proposes a random forest regression (RFR) model to predict the industrial water demand at 0.50× 0.50 spatial resolution by combining various features extracted from multiple data sources. The dataset used here include National Polar-orbiting Partnership (NPP)/Visible Infrared Imaging Radiometer Suite (VIIRS) night-time light (NTL), Global Power Plant database, AQUASTAT country-wise industrial water use data, Elevation data, Gross Domestic Product (GDP), Road density, Crop land, Population, Precipitation, Temperature, and Aridity. Compared with traditional regression algorithms, RF shows the advantages of high prediction accuracy, not requiring assumptions of a prior probability distribution, and the capacity to analyses variable importance. The final RF model was fitted using the parameter settings of ntree = 300 and mtry = 2. As a result, determinate coefficients value of 0.547 is achieved. The variable importance of the independent variables e.g. night light data, elevation data, GDP and population data used in the training purpose of RF model plays the major role in predicting the industrial water demand.

  • PDF

On the Design of Cold Storage for Fruits and Vegetables (1) -Design of Natural Ventilating Type Store for Citrus Furits in Jejudo- (청과물 저온저장고의 설계에 관한 연구 (1) -자연환기를 이용한 제주산밀감저장고의 설계-)

  • Hur Jong-Wha;Kim Hyo-Kyung
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.5 no.4
    • /
    • pp.272-280
    • /
    • 1976
  • A natural ventilating type store was designed for the economic and effective storage of citrus fruits in Jejudo. The material used for the wall is scoria, widely distributed in Jejudo and known for high strength and insulation. Design condition was chosen for the period till March of a year and the dry bulb temperature was taken from TAC $5\%$ base. The temperature of the store can be maintained below the limiting temperature of $8^{\circ}C$ for the time length of $7\frac{1}{2}$ hours under the condition of the atmospheric temp, $15.3^{\circ}C$ and the solar insolation. The limiting temperature can he recovered to the initial temperature $(7^{\circ}C)$ by the natural ventilation for 8 hours in the night.

  • PDF

Structural and temperature coefficient of resistance characteristics of colossal magnetoresistance Mn oxides prepared by RF sputtering

  • Choi, Sun-Gyu;Ha, Tae-Jung;Reddy, A.Sivasankar;Yu, Byoung-Gon;Park, Hyung-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.361-361
    • /
    • 2007
  • A lot of efforts have been paid to develop infrared imaging systems in last decades. Bolometer has a wide range of applications from military to commercial, such as military night vision, medical imaging system and so on. Bolometer is a resistive sensor that detects temperature changes through resistance change. To improve detecting ability, bolometer should have a good resistive film which has high temperature coefficient of resistance (TCR) value. Colossal magnetoresistance (CMR) $L_{1-x}A_xMnO_3$ (where L and A are trivalent rare-earth ions and divalent alkaline earth ions, respectively.) are received attention to apply bolometer resistive film because it has a high TCR property which was discovered in the metal to semiconductor phase transition temperature region. In this work, CMR films were deposited on various substrates in relative low substrate temperature by RF magnetron sputtering. The influence of deposition parameters such as substrate temperature, gas partial pressure, and so on have been studied. The structural and TCR properties of the films were also investigated for applying to microbolometer.

  • PDF

Studies on Grain-filling in Wheat II. Effects of Temperature and Soil Moisture on the Growth and Grain-filling in Wheat (맥류등숙향상에 관한 연구 제2보 온도 및 토양수분차이가 소맥의 생육 및 등숙에 미치는 영향)

  • 하용웅;류용환;연규복;김석동
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.28 no.4
    • /
    • pp.439-444
    • /
    • 1983
  • Effects of temperature and soil moisture on the growth and grain-filling of two wheat cultivars were investigated. Two levels of temperature; day 3$0^{\circ}C$/night $25^{\circ}C$ and day 2$0^{\circ}C$/night 15$^{\circ}C$ and two levels of soil moisture; stressed (45-50% of F.C.) and non-5tressed (50-60% of F.C.) were imposed in the green house from heading date to the maturity and grain weight, chlorophyll content of flag leaf and leaf area index(LAI) were observed at weekly interval. Grain maturation was faster in the high temperature than those in the lower temperature. Chlorophyll content of flag leaf and LAI decreased rapidly in the high temperature and chlorophylls disappeared at the 20 days after heading. In lower temperature condition, slower decrements were shown in chlorophyll content and it remained until 45 days after heading. Grain weights in the high and optimum temperature conditions reached to maximum values at 29 days and 45 days after heading, respectively. Differences of grain weight and chlorophyll content of flag leaf were not significant between stressed and non-5tressed soil moisture condition.

  • PDF

The nocturnal characteristics of Seoul city: Focused on light color

  • Sung Dae Hong
    • International Journal of Advanced Culture Technology
    • /
    • v.12 no.2
    • /
    • pp.353-359
    • /
    • 2024
  • The color temperature and light color of nighttime lighting in a particular city is an important factor in determining its nighttime identity. To quantitatively analyze the nocturnal characteristics of Seoul, this study focuses on the light color of the lighting sources that used in the places included in the Seoul Night View 100 Photobook. As a result, the color temperature of white light in the surveyed places is in the range of 2,500~3,500K, of which 3,000~3,500K represents the highest proportion. In addition, the color temperature in the 2,500~3,500K range was found to be evenly distributed across the five surveyed regions. Apart from white light, blue color hue accounts for a high percentage in the monochromic light category, and the excitation purity was measured to be 71.6% on average. In addition, 46% of the buildings with monochromic light are in urban centers.

Studies on the Prevention of Excessive Drying Leaves during Burley Tobacco Curing I. Effect of Temperature and Relative Humidity on the Production of Excessive Drying Leaves (버어리종 담배건조시 급건엽 발생방지에 관한 연구 I. 온습도의 영향)

  • 배성국;임해건;추홍구
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.31 no.4
    • /
    • pp.420-425
    • /
    • 1986
  • This study was conducted to investigate the influence of air temperature and relative humidity on excessive drying rate of burley tobacco. In experiment I, 4 temperatures and I humidity by day and air curing by night were treated from initial curing stage. In experiment II, 15 combinations of 3 temperatures and 5 humidities were applied from the yellow stage of cure. Yellowish cured leaves resulted from overdrying at high temperature and especially, at low humidity. How- ever, these were not produced at 75-80% RH and under 35$^{\circ}C$ by day with air curing b y night. The proper range of temperature and humidity for desirable color of cured leaf were the combinations of 30$^{\circ}C$, 75-80% RH or 35$^{\circ}C$, 80-85% RH. As excessive drying leaves increased, physical properties of cured leaves were poorer and chemical contents were less decomposed.

  • PDF

Evaluation of Simple CO2 Budget with Environmental Monitoring at an Oyster Crassostrea gigas Farm in Goseong Bay, South Coast of Korea in November 2011 (2011년 11월 고성만 굴(Crassostrea gigas) 양식장 수질환경 모니터링을 통한 이산화탄소 수지 평가)

  • Shim, JeongHee;Ye, Miju;Lim, Jae-Hyun;Kwon, Jung-No
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.47 no.6
    • /
    • pp.1026-1036
    • /
    • 2014
  • Real-time monitoring for environmental factors (temperature, salinity, chlorophyll-a, etc.) and fugacity of carbon dioxide ($fCO_2$) was conducted at an oyster Crassostrea gigas farm in Goseong Bay, south coast of Korea during 2-4th of November, 2011. Surface temperature and salinity were ranged from $17.9-18.7^{\circ}C$ and 32.7-33.8, respectively, with daily and inter-daily variations due to tidal currents. Surface $fCO_2$ showed a range of $390-510{\mu}atm$ and was higher than air $CO_2$ during the study period. Surface temperature, salinity and $fCO_2$ are showed significant correlations with chl.-a and nutrients, respectively. It means when chl.-a value is high in surface water of the oyster farm, active biological production consume $CO_2$ and nutrients from environments and produce oxygen, suggesting a tight feedback between biological processes and environmental reaction. Thus, factors affecting the surface $fCO_2$ were evaluated using a simple mass balance. Temperature and biological productions by phytoplankton are the main factors for $CO_2$ drawdown from afternoon to early night, while biological respiration increases seawater $CO_2$ at night. Air-sea exchange fraction acts as a $CO_2$ decreasing gear during the study period and is much effective when the wind speed is higher than $2-3m\;s^{-1}$. Future studies about organic carbon and biological production/respiration are required for evaluating the roles of oyster farms on carbon sink and coastal carbon cycle.