Browse > Article
http://dx.doi.org/10.14191/Atmos.2016.26.3.445

Surface Micro-Climate Analysis Based on Urban Morphological Characteristics: Temperature Deviation Estimation and Evaluation  

Yi, Chaeyeon (Weather Information Service Engine, Hankuk University of Foreign Studies)
An, Seung Man (Korea Research Institute for Human Settlements)
Kim, KyuRang (National Institute Meteorological Sciences)
Kwon, Hyuk-gi (Weather Information Service Engine, Hankuk University of Foreign Studies)
Min, Jae-Sik (Weather Information Service Engine, Hankuk University of Foreign Studies)
Publication Information
Atmosphere / v.26, no.3, 2016 , pp. 445-459 More about this Journal
Abstract
Air temperature deviation (ATD) is one of major indicators to represent spatial distribution of urban heat island (UHI), which is induced from the urbanization. The purpose of this study is to evaluate the accuracy of air temperature deviation about Climate Analysis Seoul (CAS) workbench, which had developed by National Institute Meteorological Science and TU Berlin. Comparison and correlation analysis for CAS ATD including meso-scale air temperature deviation, local-scale air temperature deviation, total air temperature deviation, surface heat flux deviation, cold air production deviation among meso-scale numerical modelling variable in 'Seoul Region', micro-scale numerical modelling in 'Detail Region', and CAS workbench variable using observation data in ground stations. Comparison between night time OBS ATD and CAS ATD show that have most close values. Most of observations ($dT_{max}$ and $dT_{min}$) have highly positive ($dT_{SHP}$, $dT_{CA}$, MD, TD, $f_{BS}$, $f_{US}$, $f_{WS}$, $h_B$) and negative ($f_{VS}$, $f_{TV}$, $h_V$, Z) correlations. However, CAS workbench needs further improvement of both observational framework and analytical framework to resolve the problems; (1) night time OBS ATD of has closer values in compare with at high rise mountain area and (2) correlations are very dependable to meteorological scale.
Keywords
Seoul climate; urban micro-climate; local air temperature; pedestrian thermal environment;
Citations & Related Records
Times Cited By KSCI : 10  (Citation Analysis)
연도 인용수 순위
1 Janicke, B., F. Meier, F. Lindberg, S. Schubert, and D. Scherer, 2016: Towards city-wide, building-resolving analysis of mean radiant temperature. Urban Climate, 15, 83-98.   DOI
2 Jee, J.-B., and Y.-J. Choi, 2014: Conjugation of Landsat data for analysis of the land surface properties in capital Area. Korean Earth Sci. Soc., 35, 54-68.   DOI
3 Jee, J.-B., M. Jang, C. Yi, I. S. Zo, B. Y. Kim, M. S. Park, and Y. J. Choi, 2016: Sensitivity analysis of the highresolution WISE-WRF model with the use of surface roughness length in Seoul metropolitan areas. Atmosphere, 26, 111-126 (in Korean with English abstract).   DOI
4 Kim, K. R., C. Yi, J.-S. Lee, F. Meier, B. Jaenicke, U. Fehrenbach, and D. Scherer, 2014. BioCAS: Biometeorological climate impact assessment system for buildingscale impact assessment of heat-stress related mortality. Die Erde, 145, 62-79.
5 Kim, Y. H., and J. J. Baik, 2002: Maximum urban heat island intensity in Seoul. J. Appl. Meteorol., 41, 651-659.   DOI
6 Kusaka, H., H. Kondo, Y. Kikegawa, and F. Kimura, 2001: A simple single-layer urban canopy model for atmospheric models: Comparison with multi-layer and slab models. Bound.-Layer Meteor., 101, 329-358.   DOI
7 Kwon, H.-G., H.-J. Yang, C. Yi, Y.-H. Kim, and Y.-J. Choi, 2015: Urban climate impact assessment reflecting urban planning scenarios: connecting green network across the north and south in Seoul. J. Environ. Impact Assess., 24, 134-153.   DOI
8 An, S. M., K. S. Lee, and C. Yi, 2015: Building wind corridor network using roughness length. J. Korean Inst. Landsc. Archit., 43, 101-113.   DOI
9 Lindberg, F., S. Onomura, and C. S. B. Grimmond, 2016: Influence of ground surface characteristics on the mean radiant temperature in urban areas. Int. J. Biometeorol., 60, 1439-1452, doi:10.1007/s00484-016-1135-x.   DOI
10 Lee, C., C. Muller, D. Young, E. Warren, C. S. B. Grimmond, X. Cai, and E. Ferranti, 2015: Urban Meteorological Networks: The urban climatologists panacea? Proc. of the International Conference of Urban Climate.
11 Eum, J. H., D. Scherer, U. Fehrenbach, and J. H. Woo, 2011: Development of an urban landcover classification scheme suitable for representing climatic conditions in a densely built-up Asian megacity. Landscape. Urban Plan., 103, 362-371.   DOI
12 An, S. M., H. G. Son, K.-S. Lee, and C. Yi, 2016: A Study of the urban tree canopy mean radiant temperature mitigation estimation. J. Korean Inst. Landsc. Archit., 44, 93-106.   DOI
13 Aoyagi, T., and N. Seino, 2011: A square prism urban canopy scheme for the NHM and its evaluation on summer conditions in the Tokyo metropolitan area, Japan. J. Appl. Meteor. Climatol., 50, 1476-1496.   DOI
14 Bhang, K. J., and S.-S. Park, 2009: Evaluation of the surface temperature variation with surface settings on the urban heat island in Seoul, South Korea using Landsat-7 ETM+ and SPOT. IEEE Geosci. Remote Sens. Lett., 6, 708-712.   DOI
15 Chow, W. T., R. L. Pope, C. A. Martin, and A. J. Brazel, 2011: Observing and modeling the nocturnal park cool island of an arid city: horizontal and vertical impacts. Theor. Appl. Climatol., 103, 197-211.   DOI
16 Christen, A., and R. Vogt, 2004: Energy and radiation balance of a Central European City. Int. J. Climatol., 24, 1395-1421.   DOI
17 Grimmond, C. S. B., and Coauthors, 2010: Climate and more sustainable cities: climate information for improved planning and management of cities (producers/ capabilities perspective). Environ. Sci., 1, 247-274.
18 Hong, J. W., J. K. Hong, S. E. Lee, and J. Lee, 2013: Spatial distribution of Urban Heat Island based on Local Climate Zone of Automatic Weather Station in Seoul metropolitan area. Atmosphere, 23, 413-424 (in Korean with English abstract).   DOI
19 Ihaka, R., 1998: R: Past and future history. Comput. Sci. Stat., 392-396.
20 Martilli, A., A. Clappier, and M. W. Rotach, 2002: An urban surface exchange parameterisation for mesoscale models. Bound.-Layer Meteor., 104, 261-304.   DOI
21 Masson, V., 2000: A physically-based scheme for the urban energy budget in atmospheric models. Bound.-Layer Meteor., 94, 357-397.   DOI
22 Mochida, A., and I. Y. Lun, 2008: Prediction of wind environment and thermal comfort at pedestrian level in urban area. J. Wind Eng. Ind. Aerod., 96, 1498-1527.   DOI
23 Mosimann, T., T. Frey, and P. Trute, 1999: Schutzgut Klima/Luft in der Landschaftsplanung. Inf. Dienst Nat. Schutz Niedersachs, 19, 201-276.
24 Oke, T. R., 1982: The energetic basis of the urban heat island. Quart. J. Roy. Meteor. Soc., 108, 1-24.
25 Oke, T. R., 1988: Street design and urban canopy layer climate. Energ. Buildings, 11, 103-113.   DOI
26 Oke, T. R., 2002: Boundary layer climates. Routledge, 435 pp.
27 Parlow, E., D. Scherer, and U. Fehrenbach, 2006: Regionale klimaanalyse der region Sudlicher Oberrhein (REKLISO). Wissenschaftlicher Abschlussbericht, erstellt im Auftrag des Regionalverbandes Sudlicher Oberrhein, Freiburg.
28 Parlow, E., D. Scherer, and U. Fehrenbach , 2010: Klimaanalyse der Stadt Zurich (KLAZ). Umwelt und Gesundheitsschutz der Stadt Zurich. Abschlussbericht. 76S.
29 Ryu, Y. H., and J. J. Baik, 2012: Daytime local circulations and their interactions in the Seoul metropolitan area. J. Appl. Meteorol. Climatol., 52, 784-801.
30 Perego, S., 1999: Metphomod - a numerical mesoscalemodel for the simulation of regional photosmog in complex terrain: model description and application during Pollumet 1993 (Switzerland). Meterol. Atmos. Phys., 70, 43-69.   DOI
31 Seoul Metropolitan Government (SMG), 2014: 2030 Seoul plan. Seoul Metropolitan Government, 225 pp.
32 Salamanca, F., and A. Martilli, 2010: A new Building Energy Model coupled with an Urban Canopy Parameterization for urban climate simulations—part II. Validation with one dimension off-line simulations. Theor. Appl. Climatol., 99, 345-356.   DOI
33 Scherer, D., U. Fehrenbach, H.-D. Beha, and E. Parlow, 1999: Improved concepts and methods in analysis and evaluation of the urban climate for optimizing urban planning processes. Atmos. Environ., 33, 4185-4193.   DOI
34 Scherer, D., U. Fehrenbach, T. Lakes, S. Lauf, F. Meier, and C. Schuster, 2013: Quantification of heat-stress related mortality hazard, vulnerability and risk in Berlin, Germany. Die Erde, 144, 238-259.
35 Seto, K. C., B. Guneralp, and L. R. Hutyra, 2012: Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc. of the National Academy of Sciences, 109, 16083-16088.
36 Stathopoulos, T., 2006: Pedestrian level winds and outdoor human comfort. J. Wind Eng. Ind. Aerod., 94 769-780.   DOI
37 Stewart, I. D., and T. R. Oke, 2012: Local climate zones for urban temperature studies. Bull. Amer. Meteor. Soc., 93, 1879-1900.   DOI
38 Sukopp, H., R. Wittig, and H. P. Blume, 1993: Stadtokologie. Fischer, 402 pp.
39 Yi, C., J.-H. Eum, Y.-J. Choi, K. R. Kim, D. Scherer, U. Fehrenbach, and G.-H. Kim, 2011: Development of Climate Analysis Seoul (CAS) maps based on landuse and meteorological model. J. Korean Assoc. Geogr. Inf. Stud., 14, 12-25.   DOI
40 Voogt, J. A., and T. R. Oke, 2003: Thermal remote sensing of urban climates. Remote Sens. Environ., 86, 370-384.   DOI
41 Yi, C., T. H. Kwon, M. S. Park, Y.-J. Choi, and S. M. An, 2015: A study on the roughness length spatial distribution in relation to the Seoul building morphology. J. Korean Meteor. Soc., 25, 235-247.
42 Yi, C., S. M. An, K. R. Kim, Y.-J. Choi, and D. Scherer, 2012: Improvement of air temperature analysis by precise spatial data on a local-scale: a case study of Eunpyeong New-town in Seoul. J. Korean Assoc. Geogr. Inf. Stud., 15, 144-158.   DOI
43 Yi, C., H.-G. Kwon, and Y.-J. Choi, 2014a: Utilizing climate information for the improvement of urban planning and environmental management. Proc. of the autumn meeting of J. Korean Meteor. Soc., 1-2.
44 Yi, C., K. R. Kim, S. M. An, and Y.-J. Choi, 2014b: Impact of the local surface characteristics and the distance from the center of heat island to suburban areas on the night temperature distribution over the Seoul metropolitan area. J. Korean Assoc. Geogr. Inf. Stud., 17, 35-49.   DOI
45 Yi, C., K. R. Kim, S. M. An, Y.-J. Choi, A. Holtmann, B. Jaenicke, U. Fehrenbach, and D. Scherer, 2016: Estimating spatial patterns of air temperature at building resolving spatial resolution in Seoul, Korea. Int. J. Climatol., 36, 533-549.   DOI
46 Yu, C., and W. N. Hien, 2006: Thermal benefits of city parks. Energy Build., 38, 105-120.   DOI