• Title/Summary/Keyword: Nicotinamide

Search Result 231, Processing Time 0.031 seconds

Nitrite Scavenging and Alcohol Metabolizing Activities of Hot Water Extract from Makgeoly and Its Angiotensin Converting Enzyme Inhibitory Effect (막걸리 열수 추출물의 아질산염 소거능, 알코올 분해능 및 angiotensin converting enzyme 저해 효과)

  • Cho, Eun-Kyung;Kim, Hee-Yeon;Byeon, Hyeon-Ji;Kim, Soo-Won;Choi, Young-Ju
    • Journal of Life Science
    • /
    • v.20 no.5
    • /
    • pp.768-774
    • /
    • 2010
  • In this study, we investigated the antioxidant activities, alcohol metabolizing activities, nitrite scavenging ability, angiotensin converting enzyme (ACE), and elastase inhibitory effects of hot water extract from Makgeoly (HWM). Antioxidant activities were measured by using 2,2.diphenyl.1.picryl.hydrazyl (DPPH) free radical scavenging activity and SOD (superoxide dismutase).like activity. The DPPH radical scavenging activity and SOD.like activity of HWM were remarkably increased in a dose.dependent manner and were 48.0% and 98.7% at 10 mg/ml, respectively. To determine the influence of HWM on alcohol metabolizing activity, the generating activities of reduced.nicotinamide adenine dinucleotide (NADH) by alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) were measured. The facilitating rates of ADH and ALDH activity by HWM were remarkably increased in a dose.dependent manner and were 70.2% and 64.1% at 10 mg/ml, respectively. The inhibitory activity against angiotensin converting enzyme (ACE) of HWM was increased in a dose.dependent manner and was 74.2% at 10 mg/ml. The nitrite scavenging ability of HWM showed the most remarkable effect at pH 1.2 and 2 mg/ml. These results indicated that HWM may have valuable biological properties owing to their antioxidant activities, ADH and ALDH activity, nitrite scavenging ability, and ACE inhibitory activity.

Computational Optimization of Bioanalytical Parameters for the Evaluation of the Toxicity of the Phytomarker 1,4 Napthoquinone and its Metabolite 1,2,4-trihydroxynapththalene

  • Gopal, Velmani;AL Rashid, Mohammad Harun;Majumder, Sayani;Maiti, Partha Pratim;Mandal, Subhash C
    • Journal of Pharmacopuncture
    • /
    • v.18 no.2
    • /
    • pp.7-18
    • /
    • 2015
  • Objectives: Lawsone (1,4 naphthoquinone) is a non redox cycling compound that can be catalyzed by DT diaphorase (DTD) into 1,2,4-trihydroxynaphthalene (THN), which can generate reactive oxygen species by auto oxidation. The purpose of this study was to evaluate the toxicity of the phytomarker 1,4 naphthoquinone and its metabolite THN by using the molecular docking program AutoDock 4. Methods: The 3D structure of ligands such as hydrogen peroxide ($H_2O_2$), nitric oxide synthase (NOS), catalase (CAT), glutathione (GSH), glutathione reductase (GR), glucose 6-phosphate dehydrogenase (G6PDH) and nicotinamide adenine dinucleotide phosphate hydrogen (NADPH) were drawn using hyperchem drawing tools and minimizing the energy of all pdb files with the help of hyperchem by $MM^+$ followed by a semi-empirical (PM3) method. The docking process was studied with ligand molecules to identify suitable dockings at protein binding sites through annealing and genetic simulation algorithms. The program auto dock tools (ADT) was released as an extension suite to the python molecular viewer used to prepare proteins and ligands. Grids centered on active sites were obtained with spacings of $54{\times}55{\times}56$, and a grid spacing of 0.503 was calculated. Comparisons of Global and Local Search Methods in Drug Docking were adopted to determine parameters; a maximum number of 250,000 energy evaluations, a maximum number of generations of 27,000, and mutation and crossover rates of 0.02 and 0.8 were used. The number of docking runs was set to 10. Results: Lawsone and THN can be considered to efficiently bind with NOS, CAT, GSH, GR, G6PDH and NADPH, which has been confirmed through hydrogen bond affinity with the respective amino acids. Conclusion: Naphthoquinone derivatives of lawsone, which can be metabolized into THN by a catalyst DTD, were examined. Lawsone and THN were found to be identically potent molecules for their affinities for selected proteins.

Effects of a mixture of Citri Pericarpium and Scutellariae Radix on acute reflux esophagitis in rats (진피-황금 혼합물이 급성 역류성 식도염 흰쥐에 미치는 효과)

  • Lee, Jin A;Shin, Mi-Rae;Roh, Seong-Soo;Park, Hae-Jin
    • Journal of Nutrition and Health
    • /
    • v.54 no.3
    • /
    • pp.321-333
    • /
    • 2021
  • Purpose: Reflux esophagitis is a disease caused by the reflux of stomach contents and stomach acid etc. into the esophagus due to defect in the lower esophageal sphincter and is currently increasing worldwide. This study was conducted to evaluate the effect of a mixture of Citrus Reticulata and Scutellariae Radix (CS) extract on acute reflux esophagitis in rats. Methods: Rats were divided into five groups for examination: normal group (Normal, n = 8), water-treated acute reflux esophagitis rats (Control, n = 8), tocopherol 30 mg/kg body weight-treated acute reflux esophagitis rats (Toco, n = 8), CS 100 mg/kg body weight-treated acute reflux esophagitis rats (CS100, n = 8), CS 200 mg/kg body weight-treated acute reflux esophagitis rats (CS200, n = 8). The experimental groups were administrated of each treatment compounds and after 90 min, acute reflux esophagitis was induced through surgery. Rats were sacrificed 5 h after surgery. We measured the level of reactive oxygen species (ROS) in serum and analyzed the expression of nicotinamide adenine dinucleotide phosphate, inflammatory, and tight junction-related proteins by western blot in the esophageal tissues. Results: CS administration significantly protected the esophageal mucosal damage due to reflux esophagitis, and the level of ROS in the serum was significantly reduced with CS administration as compared to Control. In addition, CS administration significantly suppressed mitogen-activated protein kinase (MAPK or MAP kinase) and nuclear factor-kappa B (NF-κB) pathways and increased protein expressions of tight junction protein. Conclusion: These results suggest that the CS not only regulates the expression of inflammatory proteins by inhibiting oxidative stress, but also reduces damage to the esophageal mucosa by inhibiting the expression of tight junction proteins.

Rg3-enriched Korean Red Ginseng extract inhibits blood-brain barrier disruption in an animal model of multiple sclerosis by modulating expression of NADPH oxidase 2 and 4

  • Lee, Min Jung;Choi, Jong Hee;Oh, Jinhee;Lee, Young Hyun;In, Jun-Gyo;Chang, Byung-Joon;Nah, Seung-Yeol;Cho, Ik-Hyun
    • Journal of Ginseng Research
    • /
    • v.45 no.3
    • /
    • pp.433-441
    • /
    • 2021
  • Background: Multiple sclerosis (MS) and its animal model, the experimental autoimmune encephalomyelitis (EAE), are primarily characterized as dysfunction of the blood-brain barrier (BBB). Ginsenoside-Rg3-enriched Korean Red Ginseng extract (Rg3-KRGE) is known to exert neuroprotective, anti-inflammatory, and anti-oxidative effects on neurological disorders. However, effects of Rg3-KRGE in EAE remain unclear. Methods: Here, we investigated whether Rg3-KRGE may improve the symptoms and pathological features of myelin oligodendroglial glycoprotein (MOG)35-55 peptide - induced chronic EAE mice through improving the integrity of the BBB. Results: Rg3-KRGE decreased EAE score and spinal demyelination. Rg3-KRGE inhibited Evan's blue dye leakage in spinal cord, suppressed increases of adhesion molecule platelet endothelial cell adhesion molecule-1, extracellular matrix proteins fibronection, and matrix metallopeptidase-9, and prevented decreases of tight junction proteins zonula occludens-1, claudin-3, and claudin-5 in spinal cord following EAE induction. Rg3-KRGE repressed increases of proinflammatory transcripts cyclooxygenase-2, inducible nitric oxide synthase, interleukin (IL)-1 beta, IL-6, and tumor necrosis factor-alpha, but enhanced expression levels of anti-inflammatory transcripts arginase-1 and IL-10 in the spinal cord following EAE induction. Rg3-KRGE inhibited the expression of oxidative stress markers (MitoSOX and 4-hydroxynonenal), the enhancement of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 2 (NOX2) and NOX4, and NADPH activity in the spinal cord of chronic EAE mice. Furthermore, apocynin, a NOX inhibitor, mimicked beneficial effects of Rg3-KRGE in chronic EAE mice. Conclusion: Our findings suggest that Rg3-KRGE might alleviate behavioral symptoms and pathological features of MS by improving BBB integrity through modulation of NOX2/4 expression.

Effects of Buja-tang Extract on Osteoarthritic Animal Model (부자탕 추출물이 골관절염 동물 모델에 미치는 영향)

  • Park, Jung-Hyun;Yang, Doo-Hwa;Woo, Chang-Hoon;An, Hee-Duk
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.31 no.1
    • /
    • pp.17-32
    • /
    • 2021
  • Objectives The present study was designed to find out the therapeutic effects and possible underlying mechanism of Buja-tang, a herbal complex formula on experimental monosodium iodoacetate (MIA)-induced osteoarthritis. Methods Osteoarthritis models were created via intra-joint injection of MIA (50 μL with 80 mg/mL) in rats. Rats were divided into five groups and each group consisted of seven. Normal group was not injected MIA and did a normal diet. Control group injected MIA and received distilled water. Indo injected MIA and oral administration of 5 mg/kg of indomethacin. BJTL injected MIA and oral administration of 100 mg/kg of Buja-tang. BJTH injected MIA and oral administration of 200 mg/kg of Buja-tang. We analyzed weight-bearing ability of hind paws, oxidative stress related factor, antioxidant protein, inflammatory protein, inflammatory messenger and cytokine in joint tissue. Pathological observation of knee cartilage tissue structures was also performed with hematoxylin & eosin and safranin-O chromosomes. Results Weight-bearing ability of hind paws showed a tendency to reduce pain. The incidence of nicotinamide adenine dinucleotide phosphate oxidase and p22phox in articular tissue was significantly reduced, and the incidence of nuclear factor-erythroid 2-related factor 2 and heme oxygenase-1 and superoxide dismutases was significantly increased. The incidence of phosphorylated inhibitor of κBα, nuclear factor-kappa B p65, inducible nitric oxide synthase, cyclooxygenase-2, tumor necrosis factor alpha, interleukin (IL)-6, and IL-1β decreased significantly. In pathological observation, cartilage tissue damaged by MIAs in biopsy has significantly recovered from Buja-tang administration. Conclusions Buja-tang has anti-inflammation, antioxidation and pain relief effects. So this is thought to inhibit the progress of osteoarthritis in rat caused by the MIA.

Comprehensive investigations of key mitochondrial metabolic changes in senescent human fibroblasts

  • Ghneim, Hazem K.;Alfhili, Mohammad A.;Alharbi, Sami O.;Alhusayni, Shady M.;Abudawood, Manal;Aljaser, Feda S.;Al-Sheikh, Yazeed A.
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.26 no.4
    • /
    • pp.263-275
    • /
    • 2022
  • There is a paucity of detailed data related to the effect of senescence on the mitochondrial antioxidant capacity and redox state of senescent human cells. Activities of TCA cycle enzymes, respiratory chain complexes, hydrogen peroxide (H2O2), superoxide anions (SA), lipid peroxides (LPO), protein carbonyl content (PCC), thioredoxin reductase 2 (TrxR2), superoxide dismutase 2 (SOD2), glutathione peroxidase 1 (GPx1), glutathione reductase (GR), reduced glutathione (GSH), and oxidized glutathione (GSSG), along with levels of nicotinamide cofactors and ATP content were measured in young and senescent human foreskin fibroblasts. Primary and senescent cultures were biochemically identified by monitoring the augmented cellular activities of key glycolytic enzymes including phosphofructokinase, lactate dehydrogenase, and glycogen phosphorylase, and accumulation of H2O2, SA, LPO, PCC, and GSSG. Citrate synthase, aconitase, α-ketoglutarate dehydrogenase, succinate dehydrogenase, malate dehydrogenase, isocitrate dehydrogenase, and complex I-III, II-III, and IV activities were significantly diminished in P25 and P35 cells compared to P5 cells. This was accompanied by significant accumulation of mitochondrial H2O2, SA, LPO, and PCC, along with increased transcriptional and enzymatic activities of TrxR2, SOD2, GPx1, and GR. Notably, the GSH/GSSG ratio was significantly reduced whereas NAD+/NADH and NADP+/NADPH ratios were significantly elevated. Metabolic exhaustion was also evident in senescent cells underscored by the severely diminished ATP/ADP ratio. Profound oxidative stress may contribute, at least in part, to senescence pointing at a potential protective role of antioxidants in aging-associated disease.

The Antioxidant, Alcohol Metabolizing Enzyme, and Hepatoprotective Activities of Dendropanax morbifera Vinegar with Traditional Fermentation Methods (전통적인 발효 방법으로 제조한 황칠 식초의 항산화, 알코올 대사 효소 및 간보호 활성)

  • Jung, Kyung Im;Jung, Han Nah;Choi, Young Ju
    • Journal of Life Science
    • /
    • v.32 no.4
    • /
    • pp.290-297
    • /
    • 2022
  • This study was performed to investigate the organic acids, alcohol metabolism enzyme, and antioxidative, nitrite-scavenging, and hepatoprotective effects of Dendropanax morbifera vinegar prepared by a traditional fermentation method. Among the organic acids detected, acetic acid was the highest found, at 91.72 mg/ml, followed by lactic acid (7.31 mg/ml), malic acid (1.36 mg/ml), and succinic acid (1.20 mg/ml). The total polyphenol content of the D. morbifera vinegar was 13.73 ㎍ tannic acid equivalent (TAE)/ml. The 1,1-Diphenyl-2-picrylhydrazy (DPPH) radical scavenging activity of D. morbifera vinegar was 76.04% at a 60% concentration. The superoxide dismutase (SOD) activity of D. morbifera vinegar was increased in a dose-dependent manner, which was 95.14% at a 60% concentration, while the α-glucosidase inhibitory activity of D. morbifera vinegar was 98.94% at a 10% concentration. The effects of D. morbifera vinegar on alcohol metabolism were determined by measuring the generation of reduced nicotinamide adenine dinucleotide (NADH) by alcohol dehydrogenase (ADH) and acetaldehyde dehydrogenase (ALDH). The ADH and ALDH activities of D. morbifera vinegar were increased in a dose-dependent manner, 43.62% and 60.39% at a 60% concentration, respectively. The D. morbifera vinegar showed significant protective effects against tacrine-induced cytotoxicity in HepG2 cells at the 0.6% concentration. These results suggest that D. morbifera vinegar has great potential as a resource for high quality functional health beverages.

Major ginsenosides from Panax ginseng promote aerobic cellular respiration and SIRT1-mediated mitochondrial biosynthesis in cardiomyocytes and neurons

  • Huang, Qingxia;Lou, Tingting;Lu, Jing;Wang, Manying;Chen, Xuenan;Xue, Linyuan;Tang, Xiaolei;Qi, Wenxiu;Zhang, Zepeng;Su, Hang;Jin, Wenqi;Jing, Chenxu;Zhao, Daqing;Sun, Liwei;Li, Xiangyan
    • Journal of Ginseng Research
    • /
    • v.46 no.6
    • /
    • pp.759-770
    • /
    • 2022
  • Background: Aerobic cellular respiration provides chemical energy, adenosine triphosphate (ATP), to maintain multiple cellular functions. Sirtuin 1 (SIRT1) can deacetylate peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α) to promote mitochondrial biosynthesis. Targeting energy metabolism is a potential strategy for the prevention and treatment of various diseases, such as cardiac and neurological disorders. Ginsenosides, one of the major bioactive constituents of Panax ginseng, have been extensively used due to their diverse beneficial effects on healthy subjects and patients with different diseases. However, the underlying molecular mechanisms of total ginsenosides (GS) on energy metabolism remain unclear. Methods: In this study, oxygen consumption rate, ATP production, mitochondrial biosynthesis, glucose metabolism, and SIRT1-PGC-1α pathways in untreated and GS-treated different cells, fly, and mouse models were investigated. Results: GS pretreatment enhanced mitochondrial respiration capacity and ATP production in aerobic respiration-dominated cardiomyocytes and neurons, and promoted tricarboxylic acid metabolism in cardiomyocytes. Moreover, GS clearly enhanced NAD+-dependent SIRT1 activation to increase mitochondrial biosynthesis in cardiomyocytes and neurons, which was completely abrogated by nicotinamide. Importantly, ginsenoside monomers, such as Rg1, Re, Rf, Rb1, Rc, Rh1, Rb2, and Rb3, were found to activate SIRT1 and promote energy metabolism. Conclusion: This study may provide new insights into the extensive application of ginseng for cardiac and neurological protection in healthy subjects and patients.

Antioxidant, Alcohol Metabolizing Enzyme, and Hepatoprotective Activities of Dendropanax morbifera Water Extract (황칠나무 물 추출물의 항산화, 알코올 대사 효소 및 간 보호 활성)

  • Jung, Kyung Im;Jung, Han Nah;Choi, Young Ju
    • Journal of Life Science
    • /
    • v.32 no.5
    • /
    • pp.348-354
    • /
    • 2022
  • The leaves, stems, seeds, and roots of Dendropanax morbifera have been used since ancient times as folk medicines for the treatment of headaches, skin diseases, infectious diseases, and other ailments. This study investigated the antioxidant, alcohol metabolism, and hepatoprotective effects of D. morbifera leaf and stem water extracts. The total polyphenol content of the D. morbifera leaf and stem water extracts was 49.56 mg tannic acid equivalent (TAE)/g, and the 1,1-diphenyl-2-picrylhydrazy (DPPH) radical scavenging activity of the D. morbifera leaf and stem water extracts was 84.09% at 1,000 ㎍/ml concentration. The effects of D. morbifera leaf and stem water extracts on alcohol metabolism were determined by measuring the generation of reduced nicotinamide adenine dinucleotide (NADH) by alcohol dehydrogenase (ADH) and acetaldehyde dehydrogenase (ALDH). The ADH and ALDH activities of D. morbifera leaf and stem water extracts were increased in a dose-dependent manner at 37.68% and 41.67%, respectively, at a 1,000 ㎍/ml concentration. The D. morbifera leaf and stem water extracts showed significant protective effects against tacrine-induced cytotoxicity in HepG2 cells at 50 ㎍/ml. Based on our results, we concluded that D. morbifera leaf and stem water extracts may be used as major pharmacological agents, such as antioxidants, alcohol metabolism, and anti-hepatitis remedies.

MHY2251, a New SIRT1 Inhibitor, Induces Apoptosis via JNK/p53 Pathway in HCT116 Human Colorectal Cancer Cells

  • Yong Jung Kang;Young Hoon Kwon;Jung Yoon Jang;Jun Ho Lee;Sanggwon Lee;Yujin Park;Hyung Ryong Moon;Hae Young Chung;Nam Deuk Kim
    • Biomolecules & Therapeutics
    • /
    • v.31 no.1
    • /
    • pp.73-81
    • /
    • 2023
  • Sirtuins (SIRTs) belong to the nicotinamide adenine dinucleotide (NAD+)-dependent class III histone deacetylase family. They are key regulators of cellular and physiological processes, such as cell survival, senescence, differentiation, DNA damage and stress response, cellular metabolism, and aging. SIRTs also influence carcinogenesis, making them potential targets for anticancer therapeutic strategies. In this study, we investigated the anticancer properties and underlying molecular mechanisms of a novel SIRT1 inhibitor, MHY2251, in human colorectal cancer (CRC) cells. MHY2251 reduced the viability of various human CRC cell lines, especially those with wild-type TP53. MHY2251 inhibited SIRT1 activity and SIRT1/2 protein expression, while promoting p53 acetylation, which is a target of SIRT1 in HCT116 cells. MHY2251 treatment triggered apoptosis in HCT116 cells. It increased the percentage of late apoptotic cells and the sub-G1 fraction (as detected by flow cytometric analysis) and induced DNA fragmentation. In addition, MHY2251 upregulated the expression of FasL and Fas, altered the ratio of Bax/Bcl-2, downregulated the levels of pro-caspase-8, -9, and -3 proteins, and induced subsequent poly(ADP-ribose) polymerase cleavage. The induction of apoptosis by MHY2251 was related to the activation of the caspase cascade, which was significantly attenuated by pre-treatment with Z-VAD-FMK, a pan-caspase inhibitor. Furthermore, MHY2251 stimulated the phosphorylation of c-Jun N-terminal kinase (JNK), and MHY2251-triggered apoptosis was blocked by pre-treatment with SP600125, a JNK inhibitor. This finding indicated the specific involvement of JNK in MHY2251-induced apoptosis. MHY2251 shows considerable potential as a therapeutic agent for targeting human CRC via the inhibition of SIRT1 and activation of JNK/p53 pathway.