• 제목/요약/키워드: Nickel-Phosphorous Plating

검색결과 13건 처리시간 0.023초

Electroless Nickel Plating on Fibers for the Highly Porous Electrode

  • Cheon, So-Young;Park, So-Yeon;Rhym, Young-Mok;Kim, Doo-Hyun;Koo, Yeon-Soo;Lee, Jae-Ho
    • Journal of Electrochemical Science and Technology
    • /
    • 제1권2호
    • /
    • pp.117-120
    • /
    • 2010
  • Materials used as fuel cell electrode should be light, high conductive, high surface area for reaction, catalytic surface and uniformity of porous structure. Nickel is widely used in electrode materials because it itself has catalytic properties. When used as electrode materials, nickel of only a few im on the surface may be sufficient to conduct the catalytic role. To manufacture the nickel with porous structure, Electroless nickel plating on carbon fiber be conducted. Because electroless nickel plating is possible to do uniform coating on the surface of substrate with complex shape. Acidic bath and alkaline bathe were used in electroless nickel plating bath, and pH and temperature of bath were controlled. The rate of electroless plating in alkaline bath was faster than that in acidic bath. As increasing pH and temperature, the rate of electrolee plating was increased. The content of phosphorous in nickel deposit was higher in acidic bath than that in alkaline bath. As a result, the uniform nickel deposit on porous carbon fiber was conducted.

ELECTROLESS PLATING OF NICKEL FOR MICRO-STRUCTURE FABRICATION

  • Jin, Huh;Lee, Jae-Ho
    • 한국표면공학회지
    • /
    • 제32권3호
    • /
    • pp.331-335
    • /
    • 1999
  • Electroless plating nickel has superior mechanical property to electroplated nickel. Furthermore nickel can be coated on nonconducting substrate. In this research, electroless plating of nickel were conducted in different bath condition to find optimum conditions of electroless nickel plating for MEMS applications. The selectivity of activation method on several substrates was investigated. The effects of nickel concentration, reducing agent concentration and inhibitor on deposition rate were investigated. The effect of pH on deposition rate and content of phosphorous in deposited nickel was also investigated.

  • PDF

트리에탄올아민을 착화제로 사용한 무전해 니켈도금욕에서의 석출물의 조성 및 기계적 성질 (Composition and Mechanical Properties of Nickel Deposit Obtained from Electroless Nickel Plating Bath Contained Triethanolamine as Complexing Agent)

  • 여운관;문인형
    • 한국표면공학회지
    • /
    • 제19권2호
    • /
    • pp.31-43
    • /
    • 1986
  • The properties of the electroless nickel deposit mainly depends on the pH of the bath, the plating temperature, and the molar ratio of nickel to hypophosphite but they are also affected by its formulation and concentration of complexing and buffering agents. According to changeing the concentration of triethanolamine and boric acid, phosphorous contents, microsturcture, crystalline, hardness and wear resistance of deposits obtained from ammoniacal alkaline bath were investigated by EPMA, differential thermal analyser, X-ray diffractometer and wear tester. The results are as follows; (1) Increasing concentration of triethanolamine in the bath, the deposits is slightly inclined to increase its phosphorous content(3.7% P). (2) In the as-plated state, the deposits are not crystallized state but they are thermally unstable phase, and they are crystallized with precipitating $Ni_3P$ at 400$^{\circ}C$. (3) The deposit containing 2.3% P has higher hardness value in the as plated and heat treated state at below 300$^{\circ}C$ than those of 3.7% phosphorous deposit (1090Hk). But in the case of heat treating at 400$^{\circ}C$, the former has lower hardness value (1000Hk) than the latter and has remarkably Ni(III) orientation by heat treatment. (4) The 3.7% phosphorous deposit heat treated at 400$^{\circ}C$ has better wear resistance than hard chromium plating.

  • PDF

다공성 탄소전극상 무전해 니켈도금의 산성과 알칼리용액 비교 연구 (Comparison of Acidic and Alkaline Bath in Electroless Nickel Plating on Porous Carbon Substrate)

  • 천소영;강인석;임영목;김두현;이재호
    • 한국표면공학회지
    • /
    • 제43권2호
    • /
    • pp.105-110
    • /
    • 2010
  • Electroless nickel plating on porous carbon substrate for the application of MCFC electrodes was investigated. Acidic and alkaline bath were used for the electroless nickel plating. The pore sizes of carbon substrates were 16-20 ${\mu}m$ and over 20 ${\mu}m$. The carbon surface was changed from hydrophobic to hydrophilic after immersing the substrate in an ammonia solution for 40 min at $60^{\circ}C$. The contact angle of water was decreased from $85^{\circ}C$ to less than $20^{\circ}$ after ammonia pretreatment. The deposition rate in the alkaline bath was higher than that in the acidic bath. The deposition rate was increased with increasing pH in both acidic and alkaline bath. The content of phosphorous in nickel deposit was decreased with increasing pH in both acidic and alkaline bath. The contents of phosphorous is low in alkaline bath. The minimum concentration of $PdCl_2$ for the electroless nickel plating was 10 ppm in alkaline bath and 5 ppm in acidic bath. The thickness of nickel was not affected by the concentration of $PdCl_2$.

화학도금법에 의한 강의 니켈 및 크롬도금 (Studies on the Chemical Plating of Nickel and Chromium on Steel)

  • 김만;김대룡;윤병하
    • 한국표면공학회지
    • /
    • 제15권3호
    • /
    • pp.127-137
    • /
    • 1982
  • In chemical plating of nickel and chromium on steel, studies on various factors affect-ing the plating operations were carried out. The optimum bath compositions and operat-ing conditions were obtained. The structure and properties of the as deposits or deposits after heat treatment were investigated. (1) The most optimum conditions for the chemical nickel and chromium plating were; 〔Ni2+〕/〔H2PO2-〕; 0.5∼0.8, 〔Cr3+〕/〔H2PO2-〕; 0.6∼0.9 PH;5.0∼5.5, temperature; 90∼95$^{\circ}C$ (2) In the case of nickel deposition, the hardness of deposits increased with increasing phosphorous contents. Heat-treating at the temperature range 200$^{\circ}C$ to 600$^{\circ}C$, the maximum hardness of deposits was obtained at 400$^{\circ}C$ and decreased at temperature above 400$^{\circ}C$ due to growth of Ni3P. (3) Corrosion resistance of chemical nickel deposits was improved with increasing of p-hosphorous contents and heat treating temperature.

  • PDF

다공성 탄소전극기지상의 무전해 니켈도금에 관한 연구 (Electroless Nickel Plating on Porous Carbon Substrate)

  • 천소영;임영목;김두현;이재호
    • 마이크로전자및패키징학회지
    • /
    • 제17권1호
    • /
    • pp.75-80
    • /
    • 2010
  • 다공성 탄소전극기지 위의 무전해 니켈도금에 관한 연구를 하였다. 다공성 탄소전극기지로는 다공도가 20 ${\mu}m$ 이상인 것과 16~20 ${\mu}m$ 인 것을 사용하였다. 소수성인 탄소 표면은 $60^{\circ}C$ 이상의 암모니아 용액에 침적함으로써 그 표면 성질이 친수성으로 변화 되었고, 40분 이상 침적 시 접촉각이 $20^{\circ}$ 이하까지 측정 되었다. 도금욕의 pH가 증가됨에 따라 탄소기지 위에 도금된 니켈 도금층의 인의 석출량은 감소하였으며 니켈 도금층이 결정질 구조를 갖는 현상이 관찰되었다. 도금층의 두께는 pH가 증가함에 따라 증가하였다. 활성화 처리를 위한 $PdCl_2$의 농도에 따른 도금층의 두께 변화는 없었으나, 도금에 필요한 $PdCl_2$의 최소농도는 5 ppm 이상인 것으로 나타났다.

Al 소지상에 무전해 Ni도금시 응력 변화 (The Change in Residual Stress of Electroless Nickel Deposits on Aluminum Substrate)

  • 권진수;최순돈
    • 한국표면공학회지
    • /
    • 제29권2호
    • /
    • pp.100-108
    • /
    • 1996
  • The internal stress of acidic electroless nickel deposits on zincated aluminum was determined by spiral contractometer. Several plating conditions such as inhibitor and complexing agent concentrations and pH affecting the internal stress were studied. The resulting intrinsic stress contribution to the total stress was discussed in terms of phosphorous content of the deposit, solution pH, and surface morphology. However, the most important was found to be thermal stress for the total stress of Al substrate, because of high thermal expansion coefficient of the aluminum substrate.

  • PDF

대면적 미세 가공공정 원천기술 개발 (Core Technology Development for Micro Machining Process on Large Surface)

  • 이석우;이동윤;송기형;강호철;김수진
    • 한국정밀공학회지
    • /
    • 제28권7호
    • /
    • pp.769-776
    • /
    • 2011
  • In order to cope with the requirements of smaller patterns, larger surfaces and lower costs in the fields of displays, optics and energy, greater attentions is now being paid to the development of micro-pattern machining technology. Compared with flat molds, roll molds have the advantages of short delivery, ease of manufacturing larger surfaces, and continuous molding. This paper presents the state-of-the-art of the micro pattern machining technology on the roll molds and introduces some research results on the machining process technology. The copper and nickel-phosphorous-alloy plating process, machining process technology for uniform micro patterns. micro cutting simulation and the real time monitoring system for micro machining are summarized. The developed technologies have led the complete localization of the prism sheets and will be applied to the direct forming process with succeeding research & development.

무전해 니켈 도금액에서 착화제가 도금피막에 미치는 영향 (The Effect of Complexing Agent on the Deposit Charateristics in the Electroless Nickel Plating Solution)

  • 전준미;구석본;이홍기;박해덕;심수섭
    • 한국표면공학회지
    • /
    • 제37권6호
    • /
    • pp.326-334
    • /
    • 2004
  • Deposit charateristics of Electroless nickel(EN) were investigated with various complexing agents. As expected, the deposition rate of nickel is increased with pH and that of Phosphorous is decreased with pH. The result of SEM investigation shows that the rough surface crystallization is appeared with pH. It is show that the surface resistance of EN deposit is decreased with pH at 85$^{\circ}C$.

전기접점 재료상에 입힌 경질금고금층의 특성연구 Properties of a Hard Gold plating Layer on Electrical Contace Materials

  • 최송천;장현구
    • 한국표면공학회지
    • /
    • 제23권3호
    • /
    • pp.173-182
    • /
    • 1990
  • In order to prevent the thermal and enviromenatal degradation of contact materials a nickel layer was plated as an undercoat of gold plating on the surface phosphorous bronze. The thickness of nikel and gold coating and chemical resistance of the coatings were measured at various conditions. Variation of morphology and chemical composition was studied by SEM, EDS and ESCA, respectively. Nickel layer was found to act as a thermal diffusion barrier and to retard the diffusion of copper from substrate to gold coating in the temperature $200^{\circ}C$~$400^{\circ}C$. below $200^{\circ}C$gold coated contacts showed a stable and low contanct resistance, while above $200^{\circ}C$ rapid diffusion of copper formed copper oxide on the surface layer and raised the contact resistance. With the nickel thinkness of abount 5$\mu$m as an undercoat the gold thinkness of $0.5\mu$m, showed satistactory (less than 1 m$\Omega$) contact resistance below 20$0^{\circ}C$ and corresponding gold thinkness increased to 1.0 m at $300^{\circ}C$~$400^{\circ}C$.

  • PDF