• 제목/요약/키워드: Nickel sulfide

검색결과 27건 처리시간 0.026초

Synthesis and Characterization of New Nickel Sulfide Precursor

  • Lee, Sang Chan;Park, Bo Keun;Chung, Taek-Mo;Hong, Chang Seop;Kim, Chang Gyoun
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.365.2-365.2
    • /
    • 2014
  • Nickel sulfide (NiS) has been utilized in optoelectronic applications, such as transformation-toughening agent for materials used in semiconductor applications, catalysts, and cathodic materials in rechargeable lithium batteries. Recently, high quality nickel sulfide thin films have been explored using ALD/CVD technique. Suitable precursors are needed to deposit thin films of inorganic materials. However, nickel sulfide precursors available for ALD/CVD process are very limited to nickel complexes with dithiocarbamate and alkanethiolate ligands. Therefore, it is essential to prepare novel nickel sulfide suitable for ALD/CVD precesses. Herein we report on the synthesis and characterization of new nickel sulfide complex with designed aminothiolate ligand. Furthermore thin films of NiS have been prepared on silicon oxide substrates by spin coating nickel precursor 10 wt% in THF. The novel complex has been characterized by means of 1H-NMR, elemental analysis, thermogravimetric analysis (TGA), X-ray Diffraction (XRD) and scanning electron microscope (SEM).

  • PDF

Fabrication of NiS Thin Films as Counter Electrodes for Dye-Sensitized Solar Cells using Atomic Layer Deposition

  • 정진원;김은택;박수용;성명모
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.276.2-276.2
    • /
    • 2016
  • Dye-sensitized solar cells (DSCs) are promising candidates for light-to-energy conversion devices due to their low-cost, easy fabrication and relative high conversion efficiency. An important component of DSCs is counter electrode (CE) collect electrons from external circuit and reduct I3- to I-. The conventional CEs are thermally decomposed Pt on fluorine-doped tin oxide (FTO) glass substrates, which have shown excellent performance and stability. However, Pt is not suitable in terms of cost effect. In this report, we demonstrated that nickel sulfide thin films by atomic layer deposition (ALD)-using Nickel(1-dimethylamino-2-methyl-2-butanolate)2 and hydrogen sulfide at low temperatures of $90-200^{\circ}C$-could be good CEs in DSCs. Notably, ALD allows the thin films to grow with good reproducibility, precise thickness control and excellent conformality at the angstrom or monolayer level. The nickel sulfide films were characterized using X-ray photoelectron spectroscopy, scanning electron microscopy, X-ray diffraction, hall measurements and cyclic voltammetry. The ALD grown nickel sulfide thin films showed high catalytic activity for the reduction of I3- to I- in DSC. The DSCs with the ALD-grown nickel sulfide thin films as CEs showed the solar cell efficiency of 7.12% which is comparable to that of the DSC with conventional Pt coated counter electrode (7.63%).

  • PDF

다황화암모늄에 의해 제조된 황화니켈을 이용한 리튬전지의 전기 화학적 특성 평가 (Electrochemical Properties of Lithium Batteries with Nickel Sulfide by Ammonium Polysulfide)

  • 유호석
    • 한국수소및신에너지학회논문집
    • /
    • 제32권6호
    • /
    • pp.612-617
    • /
    • 2021
  • In the case of a metal sulfide electrode, it is used as an anode or cathode active material in a lithium battery. The reason is that the voltage exists between 0.8 and 2.0 V via lithium electrode and the discharge and charge capacity is high. In order to manufacture nickel sulfide for electrode, which are widely used, nano-nickel powder was sulfided using ammonium polysulfide, and single-phase NiS electrodes were manufactured through heat treatment. The prepared NiS electrode had a high initial capacity of 500 mAh/g or more, and was stabilized after 20 cycles to maintain a capacity of 400 mAh/g or more until 100 cycles.

A study on Nickel Hydroxide Crystallization for Plating waste Treatment

  • Lee, Chang-Hwan;Lee, Choul-Ho
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 The 6th International Symposium of East Asian Resources Recycling Technology
    • /
    • pp.292-295
    • /
    • 2001
  • A Study on the precipitation characteristics of nickel hydroxide as well as carbonate and sulfide is carried out to determine the proper treatment condition of the wastewater induced from nickel-plating industry. The nickel concentrations in the effluent could be kept lower than 5ppm when the value of pH was maintained higher than 10. The precipitation of nickel salts by alkaline addition to the nickel containing model wastewater was conducted by using proper amount of sodium hydroxide, sodium carbonate, sodium bicarbonate and sodium sulfide. In case of the sulfide treatment, the residual nickel concentration in the clear water after precipitates removed showed the lowest value. The influences of the precipitation condition upon the particle size of the crystals precipitated were also investigated. In spite of the various precipitation conditions were adopted, the particle size of the precipitated crystals showed no great differences. The sedimentation rates of the precipitated particle bed were observed and the free sedimentation period was terminated within 20 minutes. Although the hindered sedimentation as well as bed compaction progressed subsequently, the bed heights were maintained almost the same level after two hours of sedimentation.

  • PDF

Poncirin의 니켈에 대한 세포독성억제효과 (The Inhibitory Effects of Poncirin against Nickel Induced Cytotoxicity)

  • 양승진;곽동근;한두석
    • 대한본초학회지
    • /
    • 제21권2호
    • /
    • pp.121-127
    • /
    • 2006
  • Objectives : Nickel is a major metal used in the nickel-chromium alloys of most orthodontic appliances, partial denture and implants. This study was carried out for the examination of the cytotoxicity on nickel sulfide in cultured NIH3T3 fibroblasts, and poncirin effect on nickel-induced cytotoxicity. Methods : Cell viability for the MTT assay and cell adhesion activity for the XTT assay. Results : The $IC_{50}$ of nickel sulfide by the MTT assay was $93.7\;{\mu}M$. Poncirin was significantly increased the cell viability and cell adhesion activity. Conclusion : Nickel was highly toxic and poncirin has the inhibitory effects against nickel induced cytotoxicity.

  • PDF

리튬전지용 금속황화물 전극의 전기화학적 특성에 관한 연구 (Research of Electrochemical Properties with Metal Sulfide Electrode for Lithium Batteries)

  • 유호석;김인수
    • 한국수소및신에너지학회논문집
    • /
    • 제31권1호
    • /
    • pp.138-143
    • /
    • 2020
  • Metal sulfides are good candidates for cathode materials. Especially, iron sulfides and nickel sulfides have been demonstrated to be potential electrode materials among metal sulfides due to nontoxicity and high theoretical specific capacities. Electrochemical properties (capacity, cycle life, stability etc.) of Li/iron sulfides or nickel sulfides cell were improved by methode such as coating, doping of material, and nanoization of materials etc.

알칼리 처리된 제지슬러지의 메탄발효에 미치는 몇몇 첨가제의 효과 (The effects of some additives on Methane Fermentation of Paper Mill Sludge treated with Alkali)

  • 최종우;이규승;박승희
    • 농업과학연구
    • /
    • 제22권2호
    • /
    • pp.134-142
    • /
    • 1995
  • 제지슬러지의 메탄발효 효율을 높이기 위하여, 본 연구에서는 중온($35^{\circ}C$)과 고온($60^{\circ}C$) 메탄발효를 실시하였으며, 발효 촉진제로 기질(ethyl acetate), $F_{430}$의 구성성분(nickel), 생육인자 및 환원제(sulfur) 등의 화합물을 첨가한 후 메탄 생성 효율을 비교 조사하였다. 1. 제지슬러지를 단순히 $60^{\circ}C$로 가열해 주어도 섬유소가 분해됨을 간접적으로 확인하였으며, pH를 교정하기 위한 NaOH처리로 그 효과가 더 큰 것으로 나타났다. 2. 중온($35^{\circ}C$) 메탄발효 가스중 40%의 메탄함량을 나타낸 처리구는 nickel trioxide(5일), nickel sulfate(10일), nickel acetate(15일) 순 이었다. 3. 중온에서의 메탄생성 효율은 대조구(0.62%), ethyl acetate(0.21%), nickel acetate(2.14%), nickel sulfate(3.02%), nickel trioxide(3.34%)로 대조구에 비하여 최고 5.4배까지 증가하였으며, nickel화합물에서는 acetate< sulfate< trioxide의 순으로 메탄발효를 촉진하였다. 4. 고온 메탄발효 가스중 40%의 메탄함량을 나타낸 처리구는 nickel trioxide(3일), 혼합(5일), sodium sulfide(6일), 대조구(10일)의 순이었다. 5. 고온에서의 메탄생성 효율은 대조구(9.6%), ethyl acetate(4.8%), sodium sulfide(16.5%), nickel trioxide(19.8%), 혼합(31.9%) 처리구순으로 대조구에 비하여 최고 3.32배의 보다 높은 효율을 보여 주었으며, 중온 보다는 약 10배의 높은 효율을 나타내었다. 6. 중온과 고온 메탄발효후 pH는 메탄발효가 잘 진행된 발효조는 7.0($60^{\circ}C$, 혼합처리구)이었으나, 진행되지 못한 발효조($35^{\circ}C$, ethyl acetate)에서는 5.4로 나타났다. 7. 메탄발효폐액의 특성은 메탄발효가 잘 진행된 폐액의 COD 값이 컸으며, 전질소 함량은 낮았고, pH는 중성을 유지하였다.

  • PDF

Supercapacitive properties of nickel sulfide coated titanium dioxide nanoparticles

  • 강진현;류일환;홍다정;김그린;임상규
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.156.1-156.1
    • /
    • 2016
  • Nickel sulfide (NiS) is one of the most promising candidates as an electrode material for supercapacitors due to its good capacitive properties, high electrical conductivity and low cost. In addition to the development of the new electrode materials, nanostructuring the electrode surface is one of the main issues in enhancing the capacitive performance of the supercapacitors because the increased surface area can improve the charge transfer and energy storage processes occurring at the electrode surface. However, most nanofabrication techniques require complicated and delicate nanoprocesses, and hence are not suitable for practical use. In this work, we developed a simple method to fabricate nanostructured NiS electrodes by depositing NiS onto $TiO_2$ nanoparticles. First, $TiO_2$ nanoparticles were spin-coated on a fluorine-doped tin oxide (FTO) substrate, and then NiS layers were deposited onto the $TiO_2$ nanoparticles by consecutive dip-coatings in the solutions containing nickel and sulfur precursors. This nanostructured NiS electrode showed significantly improved capacitive properties compared to the electrode of NiS films deposited without $TiO_2$ nanoparticles. The asymmetric full-cell supercapacitor with this nanostructured NiS electrode and activated carbon electrode was also fabricated and investigated.

  • PDF

이온치환 반응을 이용한 니켈-카드뮴 폐이차전지에서 카드뮴의 분리에 대한 연구 (A Study on the Separation of Cadmium from Waste Ni-Cd Secondary Batteries by Ion Substitution Reaction)

  • 김대원;박일정;안낙균;정항철;정수훈;최중엽;양대훈
    • 자원리싸이클링
    • /
    • 제27권4호
    • /
    • pp.36-43
    • /
    • 2018
  • 폐 니켈-카드뮴 전지의 재활용을 위하여 효율적으로 카드뮴과 니켈을 분리할 수 있도록 이온치환 반응을 이용하여 선택적으로 카드뮴을 분리하였다. 폐 니켈-카드뮴 전지 내의 전극을 분쇄하여 얻은 전극 분말을 황산에 침출시킨 니켈-카드뮴 용액에 황화나트륨을 첨가하여 CdS로 침전시켰다. 다양한 조건에서 이온치환실험을 실시하였으며, 최적조건으로는 상온에서 용액의 pH = -0.1, $Na_2S/Cd=2.3$일 때 용액 내 잔존하는 Cd은 약 100 ppm으로 대부분 CdS로 침전된 결과를 얻을 수 있었다.

Enhanced extraction of copper and nickel based on the Egyptian Abu Swayeil copper ore

  • Somia T. Mohamed;Abeer A. Emam;Wael M. Fathy;Amany R. Salem;Amr B. ElDeeb
    • 분석과학
    • /
    • 제37권1호
    • /
    • pp.63-78
    • /
    • 2024
  • The continuous increasing of the global demand of copper and nickel metals raises the interest in developing alternative technologies to produce them from copper sulfide ore. Also, in line with Egypt's vision 2030 for achieving the sustainable socioeconomic development which aims at developing alternative and eco-friendly technologies for processing the Egyptian ores to produce these strategic products instead of its importing. These metals enhance the advanced electrical and electronic industries. The current work aims at investigating the recovery of copper and nickel from Abu Swayeil copper ore using pug leaching technique by sulfuric acid. The factors affecting the pug leaching process including the sulfuric acid concentration, leaching time and temperature have been investigated. The copper ore sample was characterized chemically using X-ray fluorescence (XRF) and scanning electron microscope (SEM-EDX). A response surface methodology develops a quadratic model that expects the nickel and copper leaching effectiveness as a function of three controlling factors involved in the procedure of leaching was also investigated. The obtained results showed that the maximum dissolution efficiency of Ni and Cu are 99.06 % and 95.30%, respectively which was obtained at the following conditions: 15 % H2SO4 acid concentration for 6 hr. at 250 ℃. The dissolution kinetics of nickel and copper that were examined according to heterogeneous model, indicated that the dissolution rates were controlled by surface chemical process during the pug leaching. The activation energy of copper and nickel dissolution were 26.79 kJ.mol-1 and 38.078 kJ.mol-1 respectively; and the surface chemical was proposed as the leaching rate-controlling step.