• Title/Summary/Keyword: Nickel recovery

Search Result 121, Processing Time 0.022 seconds

A Study on the Cementation Reaction of Cadmium by Zinc Powders from Leaching Solution of Waste Nickel-Cadmium Batteries (폐니켈-카드뮴 전지 침출액으로부터 아연 분말을 이용한 카드뮴의 치환반응에 대한 연구)

  • Kim, Min-Jun;Park, Il-Jeong;Kim, Dae-Weon;Jung, Hang-Chul
    • Resources Recycling
    • /
    • v.28 no.1
    • /
    • pp.23-31
    • /
    • 2019
  • Cementation is one of economical and efficient recycling method precipitating the metal ion in solution by adding another active metal. In this study for optimizing cadmium recovery efficiency, it was performed as a function of the effect of pH, temperature, particle size, and input amount of zinc in 0.1 M $CdSO_4$ solution and Ni-Cd battery leaching solutions, respectively. The particle size of zinc and temperature were key factors for Cd cementation and it was confirmed that the input amount of 2.6 of Zn/Cd ratio using granular-type zinc was optimal condition for selective Cd recovery efficiency at $25^{\circ}C$.

Preliminary Study on the Genesis and Nickel Potential of Ultramafic Rocks in Chungnam Yugu area, South Korea (충남 유구지역 초염기성암의 성인과 니켈 잠재성에 대한 예비연구)

  • Ijeung Kim;Sang-Mo Koh;Otgon-Erdene Davaasuren;Gi Moon Ahn;Chul-Ho Heo;Bum Han Lee
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.36 no.4
    • /
    • pp.323-336
    • /
    • 2023
  • We investigated the nickel potential and genesis of ultramafic rocks in the Yugu area to secure nickel resources in South Korea. The Yugu ultramafic rocks, located in the southwest of the Gyeonggi Massif, are characterized by spinel peridotite and exhibit strong serpentinization along their boundaries. The serpentinization is observed as olivine transformed to antigorite and chrysotile, while pentlandite, the nickel sulfide mineral, altered into millerite and awaruite. Serpentine displays distinct foliation, aligning subparallel to the ultramafic rock boundaries and foliation of Yugu gneiss. This suggests that the uplift of ultramafic rocks resulted in hydrothermal infiltration likely sourced from the Yugu gneiss metamorphism. The Yugu ultramafic rocks are residues after 5~18% partial melting of abyssal peridotite. Enriched light rare earth elements and Eu imply secondary metasomatism. Geochemistry suggests a link between the formation of Yugu ultramafic rock and the Triassic collision of the North and South China continents. The nickel content is around 0.17~0.21%, mainly contained in olivine and serpentine. Hence, in addition to the mineral processing study on the sulfide minerals, focused studies on oxide minerals for enhanced nickel recovery within the Yugu ultramafic rock are strongly suggested.

Purification of Single Chain Human Insulin Precursors Using Various Fusion Proteins

  • Park, Seon-Ho;Jo, Jeong-U;Nam, Du-Hyeon
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.619-622
    • /
    • 2000
  • For the production of $B^{30}-homoserine$ human insulin precursor, four types of fusion peptides LacZ, MBP, GST, and His-tagged sequence were studied in this work. Recombinant E. coli JM 103 and E. coli JM 109 containing fusion peptides were cultivated at $37^{\circ}C$ for 1hr, and gene expression was occurred when 0.5mM of isopropyl-D-thiogalactoside(IPTG) was added to the culture broth, and followed by longer than 4hr fermentation respectively. DEAE-Sphacel and gel filtration chromatography, amylose and glutathione-Sepharose 4B affinity chromatography, and nickel-affinity chromatography system were employed as purification of $B^{30}-homoserine$ human insulin precursor. Recovery yields of His-tagged, LacZ, GST, and MBP fused $B^{30}-homoserine$ human insulin precursor resulted in 47%, 20%, 20%, and 18%, respectively.

  • PDF

Recovery of Gold from Electronic Scrap by Hydrometallurgical Process

  • Lee, Churl-Kyoung;Rhee, Kang-In;Sohn, Hun-Joon
    • Resources Recycling
    • /
    • v.6 no.3
    • /
    • pp.36-40
    • /
    • 1997
  • A series of processes has been developed to recover the gold from electronic scrap containing about 200~600 ppm Au. First, mechanical beneficiation including shredding, crushing and screening was employed. Results showed that 99 percent of gold component leaves in the fraction of under 1mm of crushed scrap and its concentration was enriched to about 800 ppm without incineration. The crushed scrap was leached in 50% aqua regia solution and gold was completely dissolved at $60^{\circ}C$ withing 2 hours. Other valuable metals such as silver, copper, nickel and iron were also dissolved. The resulting solution was boiled to remove nitrous compounds in the leachate. Finally, a newly designed electrolyzer was tested to recover the gold metal. More than 99% of gold and silver were recovered within an hour by electrowinning process.

  • PDF

Treatment of Metal Wastes with Manganese Nodules (망간단괴 제연 시 금속계 폐자원의 처리)

  • Park Kyung-Ho;Nam Chul-Woo;Kim Hong-In;Park Jin-Tae
    • Resources Recycling
    • /
    • v.14 no.4 s.66
    • /
    • pp.17-21
    • /
    • 2005
  • Deep-sea Manganese nodules was treated with reduction-smelting process with adding the spent Ni-Cd battery or the cobalt contained spent catalyst for recovery of nickel and cobalt metals. The nickel in the spent Ni-Cd battery could be recovered by adding $5\%$ coke as a reducing agent regardless of the amount of battery added. However, to recover cobalt from the spent catalyst, it is require to add more coke for reduction of cobalt oxide in the catalyst. The treatment of metal wastes with manganese nodules can contribute to lower the cost for the processing of nodules and to facilitate the recycling of metal wastes.

A Study on the Selective Leaching of the Copper Component by Sulfation Process (황산화 배소법에 의한 구리성분의 선택적 침출연구)

  • Kim, Woo Jin;Kim, Joon Soo;Kim, Myong Jun;Tran, Tam;Lee, Jin-Young;Shin, Shun-Myung
    • Resources Recycling
    • /
    • v.25 no.5
    • /
    • pp.57-63
    • /
    • 2016
  • This study were carried out sulfation roasting and selective leaching test for the effective recovery of copper component in concentrate obtained by froth floatation of Autrallian low grade copper ore. The optimum conditions of sulfation roasting were temp. $450^{\circ}C$, $Na_2SO_4$ 2 mole ratio and time 1.5 h, and then selective leaching were room temperature and $H_2O$ or 1M $H_2SO_4$ solutions. Leaching efficiency of optimum sulfation product were 90 wt.% of copper, 20 wt.% of iron and 15wt.% of nickel elements. In this results, it was possible to selective decomposition leaching of the copper component under optimum conditions in this research.

Thermo-mechanical properties in bending of a multizone nickel-titanium archwire: A retrieval analysis

  • Panagiotis Roulias;Ioulia-Maria Mylonopoulou;Iosif Sifakakis;Christoph Bourauel;Theodore Eliades
    • The korean journal of orthodontics
    • /
    • v.53 no.2
    • /
    • pp.89-98
    • /
    • 2023
  • Objective: This study aimed to compare the mechanical and thermal properties in the anterior and posterior segments of new and retrieved specimens of a commercially available multizone superelastic nickel-titanium (NiTi) archwire. Methods: The following groups of 0.016 × 0.022-inch Bioforce NiTi archwires were compared: a) anterior and b) posterior segments of new specimens and c) anterior and d) posterior segments of retrieved specimens. Six specimens were evaluated in each group, by three-point bending and bend and free recovery tests. Bending moduli (Eb) were calculated. Furthermore, the new specimens were evaluated with scanning electron microscopy/energy-dispersive X-ray spectrometry. A multiple linear regression model with a random intercept at the wire level was applied for data analysis. Results: The forces in the posterior segments or new specimens were higher than those recorded in the anterior segments or retrieved specimens, respectively. Accordingly, Eb also varied. Higher austenite start and austenite finish (Af) temperatures were recorded in the anterior segments. No statistically significant differences were found for these temperatures between retrieved and new wires. The mean elemental composition was (weight percentage): Ni, 52.6 ± 0.5; Ti, 47.4 ± 0.5. Conclusions: The existence of multiple force zones was confirmed in new and retrieved Bioforce archwires. The retrieved archwires demonstrated lower forces during the initial stages of deactivation in three-point bending tests, compared with new specimens. The Af temperature of these archwires may lie higher than the regular intraoral temperature. Even at 2 mm deflections, the forces recorded from these archwires may lie beyond biologically safe limits.

Recovery of Copper from Synthetic Leaching Solution of Manganese Nodule Matte by Solvent Extraction-electrowinning Process (망간단괴 매트상 모의 침출용액으로부터 용매추출-전해채취 공정에 의한 구리의 회수)

  • Kim, Hyun-Ho;Park, Kyung-Ho;Nam, Chul-Woo;Yoon, Ho-Sung;Kim, Min-Seuk;Kim, Chul-Joo;Park, Sang-Woon
    • Resources Recycling
    • /
    • v.25 no.1
    • /
    • pp.60-67
    • /
    • 2016
  • A scale-up test with a continuous solvent extraction and electro-winning system was carried out to separate and recover copper from a synthetic sulfuric acid solution (Cu 10.5 g/L, Co 2.0 g/L, Ni 15.0 g/L, Fe 0.2 g/L). The solution was introduced into mixer-settlers with four stages of extraction and two stages of stripping for continuous countercurrent solvent extraction to separate copper from nickel and cobalt. The loading was carried out using 40% LIX 84-I(v/v) as extractant with a phase ratio of A : O = 1 : 1. Meanwhile, the stripping was undertaken at a phase ratio of A : O = 1 : 1.5 using depleted electrolyte containing 35.0 g/L Cu and 180 g/L $H_2SO_4$ as stripping solution. The extraction and stripping efficiencies were found to be 96.7% and 91.0%, respectively. The copper composition of the stripped solution (pregnant electrolyte) was 50.0 g/L Cu with impurities of 25 ppm nickel, 5 ppm cobalt and 3 ppm iron. In the electro-winning process, copper metal of 99.833 purity was yielded with current efficiency of 98.9% and current density of $1.50A/dm^2$.

Recoverty of Lithium Carbonate and Nickel from Cathode Active Material LNO(Li2NiO2) of Precursor Process Byproducts (전구체 공정부산물 LNO(Li2NiO2)계 양극활물질로부터 탄산리튬 및 니켈 회수연구)

  • Pyo, Je-Jung;Wang, Jei-Pil
    • Resources Recycling
    • /
    • v.28 no.4
    • /
    • pp.30-36
    • /
    • 2019
  • In this study, Li powder was recovered from the by-product of LNO ($Li_2NiO_2$) process, which is the positive electrode active material of waste lithium ion battery, through the $CO_2$ thermal reaction process. In the process of recovering Li powder, the $CO_2$ injection amount is 300 cc/min. The $Li_2NiO_2$ award was phase-separated into the $Li_2CO_3$ phase and the NiO phase by holding at $600^{\circ}C$ for 1 min. After this, the collected sample:distilled water = 1:50 weight ratio, and after leaching, the solution was subjected to vacuum filtration to recover $Li_2CO_3$ from the solution, and the NiO powder was recovered. In order to increase the purity of Ni, it was maintained in $H_2$ atmosphere for 3 hours to reduce NiO to Ni. Through the above-mentioned steps, the purity of Li was 2290 ppm and the recovery was 92.74% from the solution, and Ni was finally produced 90.1% purity, 92.6% recovery.