• Title/Summary/Keyword: Nickel oxide film

Search Result 73, Processing Time 0.024 seconds

Corrosion release behavior of alloy 690 and its application in high-temperature water with Zn injection

  • Liao, Jiapeng;Hu, Yousen;Li, Jinggang;Jin, Desheng;Meng, Shuqi;Ruan, Tianming;Hu, Yisong;Zhang, Ziyu
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.984-990
    • /
    • 2022
  • Corrosion release behavior of Alloy 690 in high-temperature water was investigated under the conditions of injected Zn concentrations of 0 ppb, 10 ppb and 50 ppb. A protective oxide film composed of Zn(FexCr1-x)2O4 and Cr2O3 was formed with Zn injection, resulting in a better corrosion resistance. In comparison with the Zn-free condition, the corrosion release rate under the Zn-injection conditions was smaller. The corrosion release inhibiting factors were 1.7 and 1.9 under the conditions of 10 ppb and 50 ppb Zn-injection respectively. A foreseen application of the corrosion and corrosion release rates has been proposed and discussed.

The Evolution of Preferred Orientation and Morphology of NiO Thin Films under Variation of Plasma gas and RF Sputtering Power (플라즈마 가스와 RF 파워에 따른 NiO 박막의 우선배향성 및 표면형상 변화)

  • Ryu Hyun-Wook;Choi Gwang-Ryo;Noh Whyo-Sup;Park Yong-Ju;Kwon Yong;Park Jin-Seong
    • Korean Journal of Materials Research
    • /
    • v.14 no.2
    • /
    • pp.121-125
    • /
    • 2004
  • Nickel oxide (NiO) thin films were deposited on Si(100) substrates at room temperature by RF magnetron sputtering from a NiO target. The effects of plasma gas and RF power on the crystallographic orientation and surface morphology of the NiO films were investigated. X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM) were employed to characterize the deposited film. It was found that the type of plasma gases affected the crystallographic orientation, deposition rate, surface morphology, and crystallinity of NiO films. Highly crystalline NiO films with (100) orientation were obtained when it was deposited under Ar atmosphere. On the other hand, (l11)-oriented NiO films with poor crystallinity were deposited in $O_2$. Also, the increase in RF power resulted in not only higher deposition rate, larger grain size, and rougher surface but also higher crystallinity of NiO films.

Effect of UVO Treatment on Optical and Electrical Properties of NiOx Thin Film and Perovskite Solar Cells (UVO 처리에 따른 NiOx 박막 및 페로브스카이트 태양전지 셀 특성 변화)

  • Sujin Cho;Jae-Keun Hwang;Dowon Pyun;Seok Hyun Jeong;Solhee Lee;Wonkyu Lee;Ji-Seong Hwang;Youngho Choe;Donghwan Kim
    • Current Photovoltaic Research
    • /
    • v.12 no.1
    • /
    • pp.1-5
    • /
    • 2024
  • Perovskite solar cells have exhibited a remarkable increase in efficiency from an initial 3.8% to 26.1%, marking a significant advancement. However, challenges persist in the commercialization of perovskite solar cells due to their low stability with respect to humidity, light exposure, and temperature. Moreover, the instability of the organic charge transport layer underscores the need for exploring inorganic alternatives. In the manufacturing process of the perovskite solar cells' oxide charge transport layer, ultraviolet-ozone (UVO) treatment is commonly applied to enhance the wettability of the perovskite solution. The UVO treatment on metal oxides has proven effective in suppressing surface oxygen vacancies and removing surface organic contaminants. This study focused on the characterization of nickel oxide as the hole transport material in perovskite solar cells, specifically investigating the impact of UVO treatment on film properties. Through this analysis, changes induced by the UVO treatment were observed, and consequent alterations in the device characteristics were identified.

Fabrication of Polycrystalline Si Films by Silicide-Enhanced Rapid Thermal Annealing and Their Application to Thin Film Transistors (Silicide-Enhanced Rapid Thermal Annealing을 이용한 다결정 Si 박막의 제조 및 다결정 Si 박막 트랜지스터에의 응용)

  • Kim, Jone Soo;Moon, Sun Hong;Yang, Yong Ho;Kang, Sung Mo;Ahn, Byung Tae
    • Korean Journal of Materials Research
    • /
    • v.24 no.9
    • /
    • pp.443-450
    • /
    • 2014
  • Amorphous (a-Si) films were epitaxially crystallized on a very thin large-grained poly-Si seed layer by a silicide-enhanced rapid thermal annealing (SERTA) process. The poly-Si seed layer contained a small amount of nickel silicide which can enhance crystallization of the upper layer of the a-Si film at lower temperature. A 5-nm thick poly-Si seed layer was then prepared by the crystallization of an a-Si film using the vapor-induced crystallization process in a $NiCl_2$ environment. After removing surface oxide on the seed layer, a 45-nm thick a-Si film was deposited on the poly-Si seed layer by hot-wire chemical vapor deposition at $200^{\circ}C$. The epitaxial crystallization of the top a-Si layer was performed by the rapid thermal annealing (RTA) process at $730^{\circ}C$ for 5 min in Ar as an ambient atmosphere. Considering the needle-like grains as well as the crystallization temperature of the top layer as produced by the SERTA process, it was thought that the top a-Si layer was epitaxially crystallized with the help of $NiSi_2$ precipitates that originated from the poly-Si seed layer. The crystallinity of the SERTA processed poly-Si thin films was better than the other crystallization process, due to the high-temperature RTA process. The Ni concentration in the poly-Si film fabricated by the SERTA process was reduced to $1{\times}10^{18}cm^{-3}$. The maximum field-effect mobility and substrate swing of the p-channel poly-Si thin-film transistors (TFTs) using the poly-Si film prepared by the SERTA process were $85cm^2/V{\cdot}s$ and 1.23 V/decade at $V_{ds}=-3V$, respectively. The off current was little increased under reverse bias from $1.0{\times}10^{-11}$ A. Our results showed that the SERTA process is a promising technology for high quality poly-Si film, which enables the fabrication of high mobility TFTs. In addition, it is expected that poly-Si TFTs with low leakage current can be fabricated with more precise experiments.

Characteristics of VOx Thin Film, NiOx Thin Film, and CuIx Thin Film for Carrier Selective Contacts Solar Cells (전하선택접촉 태양전지 적용을 위한 VOx 박막, NiOx 박막, CuIx 박막의 특성 연구)

  • Kiseok Jeon;Minseob Kim;Eunbi Lee;Jinho Shin;Sangwoo Lim;Chaehwan Jeong
    • Current Photovoltaic Research
    • /
    • v.11 no.2
    • /
    • pp.39-43
    • /
    • 2023
  • Carrier-selective contacts (CSCs) solar cells are considerably attractive on highly efficient crystalline silicon heterojunction (SHJ) solar cells due to their advantages of high thermal tolerance and the simple fabrication process. CSCs solar cells require a hole selective contact (HSC) layer that selectively collects only holes. In order to selectively collect holes, it must have a work function characteristic of 5.0 eV or more when contacted with n-type Si. The VOx, NiOx, and CuIx thin films were fabricated and analyzed respectively to confirm their potential usage as a hole-selective contact (HSC) layer. All thin films showed characteristics of band-gap engergy > 3.0 eV, work function > 5.0 eV and minority carrier lifetime > 1.5 ms.

Effectiveness of medical coating materials in decreasing friction between orthodontic brackets and archwires

  • Arici, Nursel;Akdeniz, Berat S.;Oz, Abdullah A.;Gencer, Yucel;Tarakci, Mehmet;Arici, Selim
    • The korean journal of orthodontics
    • /
    • v.51 no.4
    • /
    • pp.270-281
    • /
    • 2021
  • Objective: The aim of this in vitro study was to evaluate the changes in friction between orthodontic brackets and archwires coated with aluminum oxide (Al2O3), titanium nitride (TiN), or chromium nitride (CrN). In addition, the resistance of the coatings to intraoral conditions was evaluated. Methods: Stainless steel canine brackets, 0.016-inch round nickel-titanium archwires, and 0.019 × 0.025-inch stainless steel archwires were coated with Al2O3, TiN, and CrN using radio frequency magnetron sputtering. The coated materials were examined using scanning electron microscopy, an X-ray diffractometer, atomic force microscopy, and surface profilometry. In addition, the samples were subjected to thermal cycling and in vitro brushing tests, and the effects of the simulated intraoral conditions on the coating structure were evaluated. Results: Coating of the metal bracket as well as nickel-titanium archwire with Al2O3 reduced the coefficients of friction (CoFs) for the bracket-archwire combination (p < 0.01). When the bracket and stainless steel archwire were coated with Al2O3 and TiN, the CoFs were significantly lower (0.207 and 0.372, respectively) than that recorded when this bracket-archwire combination was left uncoated (0.552; p < 0.01). The friction, thermal, and brushing tests did not deteriorate the overall quality of the Al2O3 coatings; however, some small areas of peeling were evident for the TiN coatings, whereas comparatively larger areas of peeling were observed for the CrN coatings. Conclusions: Our findings suggest that the CoFs for metal bracket-archwire combinations used in orthodontic treatment can be decreased by coating with Al2O3 and TiN thin films.

Tuning for Temperature Coefficient of Resistance Through Continuous Compositional Spread Sputtering Method (연속 조성 확산 증착 방법을 통한 저항 온도 계수의 튜닝)

  • Ji-Hun Park;Jeong-Woo Sun;Woo-Jin Choi;Sang-Joon Jin;Jin-Hwan Kim;Dong-Ho Jeon;Saeng-Soo Yun;Jae-Il Chun;Jin-Ju Lim;Wook Jo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.3
    • /
    • pp.323-327
    • /
    • 2024
  • The low-temperature coefficient of resistance (TCR) is a crucial factor in the development of space-grade resistors for temperature stability. Consequently, extensive research is underway to achieve zero TCR. In this study, resistors were deposited by co-sputtering nickel-chromium-based composite compositions, metals showing positive TCR, with SiO2, introducing negative TCR components. It was observed that achieving zero TCR is feasible by adjusting the proportion of negative TCR components in the deposited thin film resistors within certain compositions. Additionally, the correlation between TCR and deposition conditions, such as sputtering power, Ar pressure, and surface roughness, was investigated. We anticipate that these findings will contribute to the study of resistors with very low TCR, thereby enhancing the reliability of space-level resistors operating under high temperatures.

A Study on Ni Electroless Plating Process for Solder Bump COG Technology (COG용 Solder Bump 제작을 위한 Ni 무전해 도금 공정에 관한 연구)

  • Han, Jeong-In
    • Korean Journal of Materials Research
    • /
    • v.5 no.7
    • /
    • pp.794-801
    • /
    • 1995
  • To connect the driver IC and Al coated glass, a method has been developed to plate electrolessly Ni on Al/PR system. It Is necessary to pretreat Al to remove oxide film before plating. In order to find pretreatment process which does not damage photoresist or glass, alkaline and fluoride zincate process have been investigated. Because photoresist and aluminum thin film can easily dissolve in alkaline solution, it is considered that the fluoride zincate process was a suitable one. After immersion in the zincate solution containing 1.5 g/$\ell$ ammonium bifluoride and 100 g/$\ell$ zinc sulfate, electroless nickel plating could be performed. The additive in the zincate solution and thiourea in the plating solution increased smoothness of the plated surface. Acld dip could improve the uniformit of the surface.

  • PDF

P-type Electrical Characteristics of the Amorphous La2NiO4+δ Thin Films

  • Hop, Dang-Hoang;Lee, Jung-A;Heo, Young-Woo;Kim, Jeong-Joo;Lee, Joon-Hyung
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.4
    • /
    • pp.231-236
    • /
    • 2018
  • We report p-type electrical characteristics of the amorphous $La_2NiO_{4+{\delta}}$ thin films which were sputtered on the glass substrates using an RF sputtering system. As-deposited thin films at room temperature and $300^{\circ}C$ were amorphous in nature. Post-annealing of the thin film samples over $400^{\circ}C$ resulted in the nano-crystallization of the $La_2NiO_{4+{\delta}}$. The electrical properties of the films were much dependent on the oxygen partial pressure, temperature of the post-annealing and sputtering ambient. The as-deposited samples at room temperature show a hole concentration of $7.82{\times}10^{13}cm^{-3}$, and it could be increased as high as $3.51{\times}10^{22}cm^{-3}$ when the films were post-annealed in an oxygen atmosphere at $500^{\circ}C$. Such p-type conductivity behavior of the $La_2NiO_{4+{\delta}}$ films suggests that the amorphous and nano-crystallized $La_2NiO_{4+{\delta}}$ films have potential for the application as p-type semiconductive or conductive materials at low temperatures where material diffusion is limited.

A Study on the Magnetic Properties and Microstructures of Ni-Fe/NiO Bilayers with Various Ar Presure in NiO Deposition (NiO 증착시의 Ar 압력 변화에 따른 Ni-Fe/NiO 이층막의 자기적특성과 미세구조에 대한 연구)

  • 노재철;이두현;김용성;서수정;박경수
    • Journal of the Korean Magnetics Society
    • /
    • v.8 no.6
    • /
    • pp.369-373
    • /
    • 1998
  • The exchange anisotropy between NiO antiferromagnetic layer and NiFe ferromagnetic layer has been investigated in NiFe(10 nm)/NiO(60 nm) formed by magnetron sputtering. The NiO films were sputtered from nickel oxide using R. F. poser and NiFe, Ta were deposited using D. C. power under Ar atmosphere. Above all. we studied the exchange anisotropy of Ni-Fe/NiO bilayer, and focused especially on the effect of NiO depostion condition. Our experimental data showed that the dominant factor for determining the exchange anisotropy properties was the Ar pressure during NiO deposition. The better exchange anisotropy properties were found when the NiO film was deposited at low Ar pressure probably due to the flatten interface and the epitaxial tendency of NiO grains and NiFe grains. However, as Ar pressure increased, interfacial diffusion at NiFe/NiO interface and oxygen content of NiO film increase, and consequently reduced the exchange anisotropy. We concluded that the flatten interface and relatively low oxygen content of NiO layer are dominant factors for the enhancement of the exchange anisotropy in NiFe/NiO bilayer.

  • PDF