• Title/Summary/Keyword: Nickel ion

Search Result 271, Processing Time 0.026 seconds

Characteristics of the Electrochemical Ion Exchanger for the Treatment of Cations in Nuclear Wastewater (원자력 폐수의 양이온 처리를 위한 전기화학적 이온교환체의 특성)

  • Hwang, Young-Gi
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.19 no.4
    • /
    • pp.176-184
    • /
    • 2016
  • Electrochemical ion exchange method is expected to be one of the most acceptable techniques for the separation of radioactive cations from nuclear wastewater. In this study a thin film of hexacyanoferrate on nickel surface was derivatized chemically in an aqueous potassium-ferricyanide solution. Electrochemical redox behavior of the nickel hexacyanoferrate(NiHCNFe) film electrode was investigated with the use of cyclic voltammetry potentiostated from -100 to 800 mV versus SCE. The electro-reduction characteristics of the NiHCNFe film were examined in the cobalt solutions. The NiHCNFe ion exchanger was more useful at lower concentration, lower temperature, and pH7 of the cobalt solution. The capacity loss of NiHCNFe was 0.018%/cycle that was less than the average loss of 2~3%/cycle of the convective organic exchanger. The 45~55% of the initial cobalt ions was electro-deposited on the NiHCNFe by using continuous recirculating reactor system. As a result, it was found that the electroactive NiHCNFe films showed better performance than the organic resins for the separation of cobalt ion from the aqueous solutions.

Anodic Dissolution Property and Structure of Passive Films on Equiatomic TiNi Intermetallic Compound

  • Lee, Jeong-Ja;Yang, Won-Seog;Hwang, Woon-Suk
    • Corrosion Science and Technology
    • /
    • v.6 no.6
    • /
    • pp.311-315
    • /
    • 2007
  • The anodic polarization behavior of equiatomic TiNi shape memory alloy with pure titanium as a reference material was investigated by means of open circuit potential measurement and potentiodynamic polarization technique. And the structure of passive films on TiNi intermetallic compounds was also conducted using AES and ESCA. While the dissolved Ni(II) ion did not affect the dissolution rate and passivation of TiNi alloy, the dissolved Ti(III) ion was oxidated to Ti(IV) ion on passivated TiNi surface at passivation potential. It has also been found that the Ti(IV) ion increases the steady state potential, and passivates TiNi alloy at a limited concentration of Ti(IV) ion. The analysis by AES showed that passive film of TiNi alloy was composed of titanium oxide and nickel oxide, and the content of titanium was three times higher than that of nickel in outer side of passive film. According to the ESCA analysis, the passive film was composed of $TiO_2$ and NiO. It seems reasonable to suppose that NiO could act as unstabilizer to the oxide film and could be dissolved preferentially. Therefore, nickel oxide contained in the passive film may promote the dissolution of the film, and it could be explained the reason of higher pitting susceptibility of TiNi alloy than pure Ti.

Preparation of Spherical Nickel Powder by Hydrothemal Process (수열합성법을 이용한 구형 니켈분말 제조)

  • 원창환;배장호;이종현;김병범
    • Journal of Powder Materials
    • /
    • v.11 no.3
    • /
    • pp.217-223
    • /
    • 2004
  • Submicron nickel powders were prepared from aqueous solution under hydrothermal condition. The experimental conditions including the types of protective agents, concentration of the solution and the pH were studied in detail. Starting concentration of nickel ion is a dominant factor affecting particle size. It was shown that the subsequent addition of Poly Vinyl Pyrrolidone(PVP) and Sodium Dodecyle Sulfate(SDS) can help to disperse the nickel powder. X-ray diffraction and SEM were employed to characterize the products.

Effects of N-and C-Substituents on Protonation of 14-Membered Tetraaza Macrocycles and Formation of their Copper(II) and Nickel(II) Complexes

  • Shin-Geol Kang;Mi-Seon Kim;Jang-Sik Choi;Moon Hwan Cho
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.5
    • /
    • pp.594-598
    • /
    • 1993
  • The protonation constants of the 14-membered tetraaza macrocycles A(3,14-dimethyl-2,6,13,17-tetraazatricyclo$[l6.4.0^{1,18}.0^{7,12}]$docosane) and B(2,3,6,13,14,17-hexamethyl-2,6,13,17-tetraazatric yclo-[l6.4.$0^{1,18}.0^{7,12}$]docosane) were measured by potentiometry. The formation constants of each of these ligands with copper(II) and nickel(II) were determined by an out-of-cell spectrophotometric method. The results indicate that the per-N-methylated macrocycle B exhibits much higher selectivity for complex formation with copper(II) over nickel(II) ion than A and other related 14-membered tetraaza macrocycles. The effects of the N-and C-substituents on the basicity and the metal ion selectivity of the ligands are discussed. The synthesis and properties of copper(II) and nickel(II) complexes of B are also described.

Nickel Oxide Nano-Flake Films Synthesized by Chemical Bath Deposition for Electrochemical Capacitors (CBD(Chemical Bath Deposition) 법으로 제조된 전기화학식 캐패시터용 NiO 나노박편 필름)

  • Kim, Young-Ha;Park, Soo-Jin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.163.2-163.2
    • /
    • 2010
  • In this work, nano-flake shaped nickel oxide (NiO) films were synthesized by chemical bath deposition technique for electrochemical capacitors. The deposition was carried out for 1 and 2 h at room temperature using nickel foam as the substrate and the current collector. The structure and morphology of prepared NiO film were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). And, electrochemical properties were characterized by cyclic voltammetry, galvanostatic charge-discharge, and AC impedence measurement. It was found that the NiO film was constructed by many interconnected NiO nano-flakes which arranged vertically to the substrate, forming a net-like structure with large pores. The open macropores may facilitate the electrolyte penetration and ion migration, resulted in the utilization of nickel oxide due to the increased surface area for electrochemical reactions. Furthermore, it was found that the deposition onto nickel foam as substrate and curent collector led to decrease of the ion transfer resistance so that its specific capacitance of a NiO film had high value than NiO nano flake powder.

  • PDF

The Separation and Recovery of Nickel and Lithium from the Sulfate Leach Liquor of Spent Lithium Ion Batteries using PC-88A

  • Nguyen, Viet Tu;Lee, Jae-Chun;Jeong, Jinki;Kim, Byung-Su;Pandey, B.D.
    • Korean Chemical Engineering Research
    • /
    • v.53 no.2
    • /
    • pp.137-144
    • /
    • 2015
  • The present paper deals with the extractive separation and selective recovery of nickel and lithium from the sulfate leachate of cathode scrap generated during the manufacture of LIBs. The conditions for extraction, scrubbing and stripping of nickel from lithium were optimized with an aqueous feed containing $2.54kg{\cdot}m^{-3}$ Ni and $4.82kg{\cdot}m^{-3}$ Li using PC-88A. Over 99.6% nickel was extracted with $0.15kmol{\cdot}m^{-3}$ PC-88A in two counter-current stages at O/A=1 and pH=6.5. Effective scrubbing Li from loaded organic was systematically studied with a dilute $Na_2CO_3$ solution ($0.10kmol{\cdot}m^{-3}$). The McCabe-Thiele diagram suggests two counter-current scrubbing stages are required at O/A=2/3 to yield lithium-scrubbing efficiency of 99.6%. The proposed process showed advantages of simplicity, and high purity (99.9%) nickel sulfate recovery along with lithium to ensure the complete recycling of the waste from LIBs manufacturing process.

Investigation on Suppression of Nickel-Silicide Formation By Fluorocarbon Reactive Ion Etch (RIE) and Plasma-Enhanced Deposition

  • Kim, Hyun Woo;Sun, Min-Chul;Lee, Jung Han;Park, Byung-Gook
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.1
    • /
    • pp.22-27
    • /
    • 2013
  • Detailed study on how the plasma process during the sidewall spacer formation suppresses the formation of silicide is done. In non-patterned wafer test, it is found that both fluorocarbon reactive ion etch (RIE) and TEOS plasma-enhanced deposition processes modify the Si surface so that the silicide reaction is chemically inhibited or suppressed. In order to investigate the cause of the chemical modification, we analyze the elements on the silicon surface through Auger Electron Spectroscopy (AES). From the AES result, it is found that the carbon induces chemical modification which blocks the reaction between silicon and nickel. Thus, protecting the surface from the carbon-containing plasma process prior to nickel deposition appears critical in successful silicide formation.

Study of Electrochemical Cs Uptake Into a Nickel Hexacyanoferrate/Graphene Oxide Composite Film

  • Choi, Dongchul;Cho, Youngjin;Bae, Sang-Eun;Park, Tae-Hong
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.123-130
    • /
    • 2019
  • We investigated the electrochemical behavior of an electrode coated with a nickel hexacyanoferrate/graphene oxide (NiPB/GO) composite to evaluate its potential use for the electrochemical separation of radioactive Cs as a promising approach for reducing secondary Cs waste after decontamination. The NiPB/GO-modified electrode showed electrochemically switched ion exchange capability with excellent selectivity for Cs over other alkali metals. Furthermore, the repetitive ion insertion and desertion test for assessing the electrode stability showed that the electrochemical ion exchange capacity of the NiPB/GO-modified electrode increased further with potential cycling in 1 M of $NaNO_3$. In particular, this electrochemical treatment enhanced Cs uptake by nearly two times compared to that of NiPB/GO and still retained the ion selectivity of NiPB, suggesting that the electrochemically treated NiPB/GO composite shows promise for nuclear wastewater treatment.

Studies on the Application of the Spent Alkaline Manganese Batteries Powder as an Adsorbent for Nickel Ion (폐(廢)알칼리망간전지(電池) 분말(粉末)의 니켈 이온 흡착제(吸着劑)로서의 활용(活用)에 관한 연구(硏究))

  • Baek, Mi-Hwa;Kim, Dong-Su;Sohn, Jeong-Soo
    • Resources Recycling
    • /
    • v.17 no.2
    • /
    • pp.63-69
    • /
    • 2008
  • The adsorption features of $Ni^{2+}$ onto spent alkaline manganese batteries powder have been investigated with the adsorbent dose, initial concentration of adsorbate and temperature as the experimental variables. The adsorption reaction of $Ni^{2+}$ ion followed the pseudo-second order rate model, and the adsorption rate constants($k_2$) decreased with increasing initial concentration of nickel ion. The equilibrium adsorption data were fitted to the Langmuir and Freundlich models. The Freundlich model represents the equilibrium data better than the Langmuir model in this initial adsorbate concentration range. As the temperature increased, the adsorbed amount of nickel ion at equilibrium was also increased, which indicated that the adsorption reaction was endothermic. Based on the experimental results obtained along with temperatures, thermodynamic parameters such as ${\Delta}H^{\circ},\;{\Delta}G^{\circ},\;and\;{\Delta}S^{\circ}$ were calculated.

A Mechanism Study on Formation and Reduction of Residual Li of High Nickel Cathode for Lithium-ion Batteries (층상계 하이니켈 양극재의 잔류 리튬 생성 및 저감 메커니즘 연구)

  • MinWook, Pin;Beom Tak, Na;Tae Eun, Hong;Youngjin, Kim
    • Journal of Industrial Technology
    • /
    • v.42 no.1
    • /
    • pp.7-12
    • /
    • 2022
  • High nickel layered oxide cathodes are gaining increasing attention for lithium-ion batteries due to their higher energy density and lower cost compared to LiCoO2. However, they suffer from the formation of residual lithium on the surface in the form of LiOH and Li2CO3 on exposure to ambient air. The residual lithium causes notorious issues, such as slurry gelation during electrode preparation and gas evolution during cell cycling. In this review, we investigate the residual lithium issues through its impact on cathode slurry instability based on deformed polyvinylidene fluoride (PVdF) as well as its formation and reduction mechanism in terms of inherently off-stoichiometric synthesis of high nickel cathodes. Additionally, new analysis method with anhydrous methanol was introduced to exclude Li+/H+ exchange effect during sample preparation with distilled water. We hope that this review would contribute to encouraging the academic efforts to consider practical aspects and mitigation in global high-energy-density lithium-ion battery manufacturers.