• Title/Summary/Keyword: Nickel exposure

Search Result 80, Processing Time 0.019 seconds

Comparative Hepatotoxicity Assessment of Cadmium and Nickel with Isolated Perfused Rat Liver(IPRL) (적출간 관류법을 이용한 카드뮴과 니켈의 간독성 비교)

  • Cha, Bong-Suk;Chang, Sei-Jin;Lee, Jung-Woo;Wang, Seung-Jun
    • Journal of Preventive Medicine and Public Health
    • /
    • v.33 no.1
    • /
    • pp.117-124
    • /
    • 2000
  • Objectives : It is the objective of this study to compare hepatotoxicity of nickel chloride and cadmium chloride with each other through IPRL(Isolated Perfused Rat Liver) method. Methods : Biochemical indicator of hepatic function such as AST(aspartate aminotransferase), ALT(alanine aminotransferase), LDH(lactate dehydrogenase) and perfusion flow rate were used as the indicator of hepatotoxicity. Oxygen consumption rate were used as vability indicator. $300({\pm}50)g$ - weighted rats were allocated randomly to each group($0{\mu}M,\;50{\mu}M,\;200{\mu}M\;NiCl_2\;and\;CdCl_2$ exposure) by 5, totally 25. After Krebs-Ringer bicarbonate butler solution flowed into the penal vein and passed the liver cell, it flowed out of vena cava. Liver was administered with each $NiCl_2\;and\;CdCl_2$ of each concentration and observed with buffer solution sampling time. Butler which got out of liver was sampled and then biochemical indicator of hepatotoxicity was measured. Results : AST, ALT, and LDH in buffer increased with sampling time much more in $CdCl_2$ exposure group than $NiCl_2$ exposure group in both 50 and $200{\mu}M$ and statistical significance w3s verified with 2-way repeated ANOVA. Viability was decreased more and more in all substances during passed time. Conclusions : It is inferred that $CdCl_2$ has stronger hepatotoxicity than $NiCl_2$. IPRL method would be used widely for acute hepatotoxicity when considerating the benefit of it.

  • PDF

Evaluation of Carcinogenic Metals in Particulate Using New ISO Standard Method (국제표준규격에 의한 입자상 물질 중 발암성 금속의 평가)

  • Park, Ji Young;Yoon, Chung Sik;Ha, Kwon Chul
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.18 no.2
    • /
    • pp.99-107
    • /
    • 2008
  • We quantified the human carcinogenic metals (chromium, nickel) in fumes from flux cored arc welding using stainless steel (FCAW/SS) wires. Zinc and calcium were also quantified because of their possibility of zinc chromate and calcium chromate, respectively. Welding was performed in an American Welding Society standard fume collection chamber. Insoluble and soluble forms of metals were analyzed by ISO 15202 method. Total chromium (insoluble+soluble) content and total nickel content were lower in FCAW/SS fumes (4.65%, 1.05%, respectively)than in stainless steel content (ca. 18%, 8%,respectively). Insoluble fraction in total chromium was 79.8 (range 64.5~95.1)% and 94.4(range 90.1~98.1)% in total nickel. Atomic emission spectroscopy used in this study does not differentiate the chromium valence status while ACGIH defines its carcinogenicity according to the valence status. From this study and previous study, we estimated the hexavalent chromium content in FCAW/SS was 0.2~1.1% and about 85% of them was soluble. The content of zinc and calcium, which can be existed as chromate forms, was low (0.02 %, 0.04% respectively) in FCAW/SS. Exposure assessment for zinc chromate and calcium chromate is possible because chromium in both compounds is used as a surrogate even though it is not well known that what compounds of zinc and calcium are formed in welding fume.

Coadsorptions of Carbon Monoxide and Oxygen on Polycrystalline Nickel Surface (다결정 니켈 표면에서의 CO 와 $O_2$의 공동흡착)

  • Soon Bo Lee;Jin Hyo Boo;Woo Sub Kim;Woon Sun Ahn
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.12
    • /
    • pp.1019-1024
    • /
    • 1993
  • The coadsorption of carbon monoxide and oxygen on polycrystalline nickel surface has been studied using XPS at the room temperaure. The adsorption of CO on the nickel surface precovered partially with oxygen is found to take place by the following steps: The CO molecules react with the preadsorbed oxygen atoms to liberate $CO_2$ gas at the initial stage of low CO exposures, and they are coadsorbed gradually with the increasing CO exposures. The extent of coadsorption at the higher CO exposures is found to decrease with the increasing degree of oxygen preadsorption. This finding is explained in terms of the reduced adsorption site for CO as a consequence of oxygen preadsorption. The CO molecules preadsorbed on the nickel surface inhibited the adsorption of $O_2$ molecules. The increase of oxygen exposure led to the dissociation of preadsorbed CO, and the NiO layers were formed concurrently. The dissociation was rendered to arise from an oxygen-to-CO energy transfer.

  • PDF

A Study on the Selection of Candidates for Substances Subject to Permission Using Chemicals Ranking and Scoring (CRS) (화학물질 우선순위 선정기법(CRS)을 활용한 허가대상 후보물질 선정 연구)

  • Kim, Hyo-dong;Park, Kyo-shik
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.32 no.3
    • /
    • pp.253-267
    • /
    • 2022
  • Objectives: This study was performed to check whether the CRS (Chemical Ranking and Scoring) system is appropriate as a method to determine substances as candidates for substances subject to permission and to apply this system to the selection of candidates for substances subject to permission. Methods: A risk score was obtained by multiplying the hazard score and the exposure score and then ranking them. The hazard sub-indicators are carcinogenicity, germ cell mutagenicity, reproductive toxicity, specific target organ toxicity-repeated exposure, respiratory sensitization and endocrine disrupting chemicals. Exposure sub-indicators are persistence, bioaccumulation and emission volume. Sensitivity analysis was performed for missing values. Correlation analysis and multivariable linear regression analysis were performed among hazard, exposure and risk in order to confirm that CRS was an appropriate method. Results: As a result of the sensitivity analysis on missing values, it was confirmed that the effect on the risk ranking was not sensitive. Correlation and regression analysis confirmed that exposure had a greater effect on risk than hazard. Conclusions: The CRS system, which derives a risk score using a hazard and exposure score, is judged to be appropriate as a method for the selection of preliminary of candidates for substances subject to permission. Benzene, cadmium, nickel, and cobalt were selected as priority candidates for substances subject to permission.

Isotherm for $Ni-O_2$ Adsorption System

  • Kyoung-Hee Ham;Woon-Sun Ahn
    • Bulletin of the Korean Chemical Society
    • /
    • v.11 no.3
    • /
    • pp.231-235
    • /
    • 1990
  • The activation energy of dissociative adsorption of oxygen on polycrystalline nickel surface is calculated from adsorption isotherms obtained using X-ray photoelectron spectroscopy. Negative value of this activation energy (-5.9 kJ/mol) indicates that the adsorption takes place through an undissociated precursor state. An adsorption energy for this precursor state is calculated assuming the precursor state as a moleculary physisorbed state ($E_{ad}$ = -7.9 kJ/mol). Finally, an adsorption isotherm equation is derived as a function of the gas exposure, which agrees with the experimental isotherms reasonably good.

A Study on the Heavy Metal Content of Permanent Wave Products (퍼머넌트 웨이브제의 중금속 함량에 관한 연구)

  • Yoo, Tai-Soon;Jang, Nam-Soon;Jung, Yeon
    • Journal of the Korean Society of Fashion and Beauty
    • /
    • v.2 no.2 s.2
    • /
    • pp.93-100
    • /
    • 2004
  • This study is to measure the heavy metal content of permanent wave products which on marketing correctly as estimating the extent of exposure by a hair permanent wave scientifically. We would like to prevent an affair from arising health obstruction as to the heavy metal who is using those and also show the basic data for proposing the new standard. The results were as follows.: in case of the average heavy metal content for a wave type thioglycol acid ingredient includes 1.61ppm(Pb), 0.03ppm(Cd), 0.05ppm(Ni), 0.27ppm(Mn), 0.82ppm(Cu) and those were recognized the significant gap between products all the heavy metals. In case of a cysteine acid ingredient includes 0.86ppm(Pb), 0.01ppm(Cd), 0.05ppm(Ni), 0.20ppm(Mn) and 0.66ppm(Cu) and those were recognized the significant gap between products except a nickel. Straight type of permanent wave reductant includes 2.11ppm(Pb), 0.01ppm(Cd), 0.27ppm(Ni), 0.66ppm(Mn), 2.53ppm(Cu) and those were recognized the significant gap between products all the heavy metals. Permanent wave reducing agent includes 1.43ppm(Pb), 0.01ppm(Cd), 0.09ppm(Ni), 0.66ppm(Mn), 0.75ppm(Cu) and those were approved the significant gap between products except a cadmium. Exposure level of the heavy metal contents per onetime permanent waving were 242.3ppm(Pb), 2.5ppm(Cd), 17.7ppm(Ni), 89.0ppm(Mn), 174.7ppm(Cu).

  • PDF

High Cadmium Levels in Cured Meat Products Marketed in Nigeria - Implications for Public Health

  • Adejumo, Olufunmilayo E;Fasinu, Pius S;Odion, Judith E;Silva, Boladale O;Fajemirokun, Timothy O
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.4
    • /
    • pp.1933-1936
    • /
    • 2016
  • Heavy metals are known to disrupt important physiological processes in living cells, and have been responsible for various pathological conditions with possible contributions to cancer development. Food contamination have been identified as one of the ways humans are exposed to heavy metals. In developing countries like Nigeria, the regulatory framework for enforcing compliance with globally acceptable exposure to deleterious contaminants is poor. In the current study, thirteen samples of cured meat products of diverse origin marketed in South-west Nigeria were evaluated for lead, cadmium, chromium and nickel contents using the atomic absorption spectroscopy technique. All the samples analysed contained cadmium between 0.35 and 1.20 ppm, levels considered higher than acceptable limits in consumable products. Lead, chromium and nickel were not detected in any of the samples. As known cumulative poisons, there is the need for stringent regulatory control of these heavy metals in cured meat products imported into or produced indigenously in the country in order to minimize the risks to public health.

A Study on the Content Variation of Metals in Welding Fumes (용접흄 충 금속함량 변화에 관한 연구)

  • 윤충식;박동욱;박두용
    • Journal of Environmental Health Sciences
    • /
    • v.28 no.2
    • /
    • pp.117-129
    • /
    • 2002
  • Concentration of welding fumes and their components is known to be hazardous to welder and adjacent worker. To determine the generation rates of metals in fumes, $CO_2$ flux cored arc welding on stainless steel was performed in well designed fume collection chamber. Variables were different products of flux cored wire(2 domestic products and 4 foreign products) and input energy(low-, optimal- , high input energy). Mass of welding fumes was determined by gravimetric method(NIOSH 0500 method), and 17 metals were analysed by inductively coupled plasm-atomic emission spectroscopy(NIOSH 7300 method). Flux cored wire tube and flux were analysed by scanning electron microscopy to determine their metal composition. 17 metals were classified by their generation rates. Generation rates of iron, manganese, potassium and sodium were all above 50mg/min at optimal input energy level. Generation rates of chromium and amorphous silica were 25~50mg/min. At 1~25mg/min level, nickel, titanium, molybdenum, and aluminum were included. Copper, zinc, calcium, lead, magnesium, lithium, and cobalt were generated below 1 mg/min. Generation rates of metal components in fumes were influenced by input energy, types of flux cored wire. Flux cored wire was consisted of outer shell tube and inner flux. Iron, chromium, and nickel were the major components of outer tube. Flux contained iron, chromium, nickel, potassium, sodium, silica, and manganese. The use of flux cored wire can increase the hazards by increasing the amounts of fumes formed relative to that of solid wire. The reason might be the direct transfer of elements from the flux, since the flux is fine power. Ratio of metals to the fume of flux cored wire was lower than that of solid wire because non-metal components of flux were transferred. Total metal content of fumes in flux cored arc welding was 47.4(24.3~57.2) percent that is much lower than that of solid wire, 75.9 percent. We found that generation rates of iron, manganese, chromium and nickel, all well known to cause work related disease to welder, increased more rapidly with increasing input energy than those of fumes. To reduce worker exposure to fumes and hazardous component at source, further research is needed to develop new welding filler materials that decrease both the amount of fumes and hazardous components.

A Study on Characteristics of Atmospheric Heavy Metals in Subway Station

  • Kim, Chun-Huem;Yoo, Dong-Chul;Kwon, Young-Min;Han, Woong-Soo;Kim, Gi-Sun;Park, Mi-Jung;Kim, Young-Soon;Choi, Dal-Woong
    • Toxicological Research
    • /
    • v.26 no.2
    • /
    • pp.157-162
    • /
    • 2010
  • In this study, we investigated the atmospheric heavy metal concentrations in the particulate matter inside the subway stations of Seoul. In particular, we examined the correlation between the heavy metals and studied the effect of the heavy metals on cell proliferation. In six selected subway stations in Seoul, particulate matter was captured at the platforms and 11 types of heavy metals were analyzed. The results showed that the mean concentration of iron was the highest out of the heavy metals in particulate matter, followed by copper, potassium, calcium, zinc, nickel, sodium, manganese, magnesium, chromium and cadmium in that order. The correlation analysis showed that the correlations between the heavy metals was highest in the following order: (Cu vs Zn), (Ca vs Na), (Ca vs Mn), (Ni vs Cr), (Na vs Mn), (Cr vs Cd), (Zn vs Cd), (Cu vs Cd), (Ni vs Cd), (Cu vs Ni), (K vs Zn), (Cu vs K), (Cu vs Cr), (K vs Cd), (Zn vs Cr), (K vs Ni), (Zn vs Ni), (K vs Cr), and (Fe vs Cu). The correlation coefficient between zinc and copper was 0.937, indicating the highest correlation. Copper, zinc, nickel, chromium and cadmium, which are generated from artificial sources in general, showed correlations with many of the other metals and the correlation coefficients were also relatively high. The effect of the heavy metals on cell proliferation was also investigated in this study. Cultured cell was exposed to 10 mg/l or 100 mg/l of iron, copper, calcium, zinc, nickel, manganese, magnesium, chromium and cadmium for 24 hours. The cell proliferation in all the heavy metal-treated groups was not inhibited at 10 mg/l of the heavy metal concentration. The only exception to this was with the cadmium-treated group which showed a strong cell proliferation inhibition. This study provides the fundamental data for the understanding of simultaneous heavy metal exposure tendency at the time of particulate matter exposure in subway stations and the identification of heavy metal sources. Moreover, this study can be used as the fundamental data for the cell toxicity study of the subway-oriented heavy metal-containing particulate matter.

Exposure Characteristics of Particles during the After-treatment Processes of Aluminum Oxide Fibers and Nickel Powders (산화알루미늄 섬유와 니켈분말 후처리공정에서 입자의 노출특성)

  • Kim, Jong Bum;Kim, Kyung Hwan;Ryu, Sung Hee;Yun, Seong-Taek;Bae, Gwi-Nam
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.26 no.2
    • /
    • pp.225-236
    • /
    • 2016
  • Objectives: Nanomaterials have been used in various fields. As use of nanoproducts is increasing, workers dealing with nanomaterials are also gradually increasing. Exposure assessments for nanomaterials have been carried out for protection of worker's health in workplace. Exposure studies were mainly focused on manufacturing processes, but these studies on after-treatment processes such as refinement, weighing, and packing were insufficient. So, we investigated exposure characteristics of particles during after-treatment processes of $Al_2O_3$ fibers and Ni powders. Methods: Mass-production of Ni powder process was carried out in enclosed capture-type canopy hood. In a developing stage, $Al_2O_3$ was handled with a local ventilation unit. Exposure characteristics of particles were investigated for $Al_2O_3$ fiber and Ni powder processes during the periods of 10:00 to 16:00, 20 May 2014 and 13:00 to 16:00, 21 May 2014, respectively. Three real-time aerosol instruments were utilized in exposure assessment. A scanning mobility particle sizer(SMPS, nanoscan, model 3910, TSI) and an optical particle counter(OPC, portable aerosol spectrometer, model 1.109, Grimm) were used to determine the particle size distribution in the size range of 10-420 nm and $0.25-32{\mu}m$, respectively. In addition, a nanoparticle aerosol monitor(NAM, model 9000, TSI) was used to measure lung-deposited nanoparticle surface area. Membrane filters(isopore membrane filter, pore size of 100 nm) were also used for air sampling for the FE-SEM(model S-5000H, Hitachi) analysis using a personal sampling pump(model GilAir Plus by 2.5 L/min, Gilian). Conclusions: For Ni powder after-treatment process, only 27% increase in particle concentration was found during the process. However, for $Al_2O_3$ fiber after-treatment process, significant exposure(1.56-3.34 times) was observed during the process.