• Title/Summary/Keyword: Nickel doping

Search Result 40, Processing Time 0.026 seconds

Enhancement of oxygen evolution reaction of NiCo LDH nanocrystals using Mo doping (Mo 도핑을 이용한 NiCo LDH 나노결정의 산소발생반응 향상)

  • Kyoungwon Cho;Jeong Ho Ryu
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.34 no.3
    • /
    • pp.92-97
    • /
    • 2024
  • To improve the efficiency of water splitting systems for hydrogen production, the high overvoltages of electrochemical reactions caused by catalysts in the oxygen evolution reaction (OER, Oxygen Evolution Reaction) must be reduced. Among them, LDH (Layered Double Hydroxide) compounds containing transition metal such as Ni, are attracting attention as catalyst materials that can replace precious metals such as platinum that are currently used. In this study, nickel foam, an inexpensive metallic porous material, was used as a support, and NiCo LDH (Layered Double Hydroxide) nanocrystals were synthesized through a hydrothermal synthesis process. In addition, changes in the shape, crystal structure, and water decomposition characteristics of the Mo-doped NiCo LDH nanocrystal samples synthesized by doping Mo to improve OER properties were observed.

The Effect of Y at Ni-YSZ Catalysts for the Application to the Process of Methane Chemical-Looping Reforming (메탄을 이용한 매체 순환 개질 시스템을 위한 Ni-YSZ 촉매에서의 Y에 따른 촉매 반응 특성 연구)

  • KIM, HEESEON;JEON, YUKWON;HWANG, JUSOON;SONG, SOONHO;SHUL, YONG-GUN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.6
    • /
    • pp.516-523
    • /
    • 2015
  • Nickel based oxygen transfer materials supported on two different YSZs were tested to evaluate their performance in methane chemical-looping reforming. The oxygen transfer materials of YSZs were selected with different amount of the doped yittrium in the $ZrO_2$ structure. The yittrium of 8 mol% stabilized the zirconia oxide to a cubic structure compare to the 3 mol% doping, which is known to be a good for oxygen transfer. Various nickel amounts (16wt.%, 32wt.%, 48wt.%) were loaded on the selected supports. The nickel amount of 32% shows the optimized catalyst structure with good physical properties and reducibility from the XRD, BET and H2-TPR analysis, especially when the support of 8YSZ was used. From the methane chemical-looping reforming, hydrogen was produced by methane decomposition catalyzed by Ni on both YSZs. Comparing two YSZ supports of 3YSZ and 8YSZ during the cycling tests, the catalyst with 8YSZ (Ni 32%) exhibits not only the higher methane conversion and hydrogen production but also a faster reaction rate reaching to the stable point.

Variations in electrode characteristics through simplification of phosphorus-doped NiCo2O4 electrode manufacturing process (인이 도핑된 NiCo2O4 전극 제조 공정의 간소화를 통한 전극 특성의 변화)

  • Seokhee-Lee;Hyunjin Cha;Jeonghwan Park;Young Guk Son;Donghyun Hwang
    • Journal of the Korean institute of surface engineering
    • /
    • v.56 no.5
    • /
    • pp.299-308
    • /
    • 2023
  • In this study, phosphorus (P)-doped nickel cobaltite (P-NiCo2O4) and nickel-cobalt layered double hydroxide (P-NiCo-LDH) were synthesized on nickel (Ni) foam as a conductive support using hydrothermal synthesis. The thermal properties, crystal structure, microscopic surface morphology, chemical distribution, electronic state of the constituent elements on the sample surface, and electrical properties of the synthesized P-NiCo2O4 and P-NiCo-LDH samples were analyzed using thermogravimetric analysis-differential scanning calorimetry (TGA-DSC), X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), cyclic voltammetry (CV), galvanostatic charge-discharge (GCD), and electrochemical impedance spectroscopy (EIS). The P-NiCo2O4 electrode exhibited a specific capacitance of 1,129 Fg-1 at a current density of 1 Ag-1, while the P-NiCo-LDH electrode displayed a specific capacitance of 1,012 Fg-1 at a current density of 1 Ag-1. When assessing capacity changes for 3,000 cycles, the P-NiCo2O4 electrode exhibited a capacity retention rate of 54%, whereas the P-NiCo-LDH electrode showed a capacity retention rate of 57%.

A Study on the Low Temperature(45$0^{\circ}C$) Poly-Si TFT Fabricated on the Glass Substrate by Metal-Induced Lateral Crystallization (MILC) (금속 유도 측면 결정화에 의해 유리기판 위에 제작된 저온(45$0^{\circ}C$) 다결정 박막 트랜지스터에 관한 연구)

  • 김태경;인태형;이병일;주승기
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.5
    • /
    • pp.48-53
    • /
    • 1998
  • Poly-Si TFT's could be fabricated on glass substrates by metal induced lateral crystallization (MILC) method at 450.deg. C. Channel area of the poly-Si TFT's was laterally crystallized from source and drain areas, where a thn nickel film was deposited. Dopants activation for the formation of source and drain region could be achieved by thermal annealing at 450.deg. C after the ion mass doping of phosphorus. The field effect mobility of thus formed N-channel poly-Si TFT's was 76cm$^{2}$/Vs, and the on/off current ratio was higher than 7E6.

  • PDF

Enhancement of Thermoelectric Properties in Cold Pressed Nickel Doped Bismuth Sulfide Compounds

  • Fitriani, Fitriani;Said, Suhana Mohd;Rozali, Shaifulazuar;Salleh, Mohd Faiz Mohd;Sabri, Mohd Faizul Mohd;Bui, Duc Long;Nakayama, Tadachika;Raihan, Ovik;Hasnan, Megat Muhammad Ikhsan Megat;Bashir, Mohamed Bashir Ali;Kamal, Farhan
    • Electronic Materials Letters
    • /
    • v.14 no.6
    • /
    • pp.689-699
    • /
    • 2018
  • Nanostructured Ni doped $Bi_2S_3$ ($Bi_{2-x}Ni_xS_3$, $0{\leq}x{\leq}0.07$) is explored as a candidate for telluride free thermoelectric material, through a combination process of mechanical alloying with subsequent consolidation by cold pressing followed with a sintering process. The cold pressing method was found to impact the thermoelectric properties in two ways: (1) introduction of the dopant atom in the interstitial sites of the crystal lattice which results in an increase in carrier concentration, and (2) introduction of a porous structure which reduces the thermal conductivity. The electrical resistivity of $Bi_2S_3$ was decreased by adding Ni atoms, which shows a minimum value of $2.35{\times}10^{-3}{\Omega}m$ at $300^{\circ}C$ for $Bi_{1.99}Ni_{0.01}S_3$ sample. The presence of porous structures gives a significant effect on reduction of thermal conductivity, by a reduction of ~ 59.6% compared to a high density $Bi_2S_3$. The thermal conductivity of $Bi_{2-x}Ni_xS_3$ ranges from 0.31 to 0.52 W/m K in the temperature range of $27^{\circ}C$ (RT) to $300^{\circ}C$ with the lowest ${\kappa}$ values of $Bi_2S_3$ compared to the previous works. A maximum ZT value of 0.13 at $300^{\circ}C$ was achieved for $Bi_{1.99}Ni_{0.01}S_3$ sample, which is about 2.6 times higher than (0.05) of $Bi_2S_3$ sample. This work show an optimization pathway to improve thermoelectric performance of $Bi_2S_3$ through Ni doping and introduction of porosity.

Maximizing TPBs through Ni-self-exsolution on GDC based composite anode in solid oxide fuel cells

  • Tan, Je-Wan;Lee, Dae-Hui;Kim, Bo-Gyeong;Kim, Ju-Seon;Mun, Ju-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.402.1-402.1
    • /
    • 2016
  • The performance of solid oxide fuel cells (SOFCs) is directly related to the electrocatalytic activity of composite electrodes in which triple phase boundaries (TPBs) of metallic catalyst, oxygen ion conducting support, and gas should be three-dimensionally maximized. The distribution morphology of catalytic nanoparticle dispersed on external surfaces is of key importance for maximized TPBs. Herein in situ grown nickel nanoparticle onto the surface of fluorite oxide is demonstrated employing gadolium-nickel co-doped ceria ($Gd0.2-xNixCe0.8O2-{\delta}$, GNDC) by reductive annealing. GNDC powders were synthesized via a Pechini-type sol-gel process while maximum doping ratio of Ni into the cerium oxide was defined by X-ray diffraction. Subsequently, NiO-GNDC composite were screen printed on the both sides of yttrium-stabilized zirconia (YSZ) pellet to fabricate the symmetrical half cells. Electrochemical impedance spectroscopy (EIS) showed that the polarization resistance was decreased when it was compared to conventional Ni-GDC anode and this effect became greater at lower temperature. Ex situ microstructural analysis using scanning electron microscopy after the reductive annealing exhibited the exsolution of Ni nanoparticles on the fluorite phases. The influence of Ni contents in GNDC on polarization characteristics of anodes were examined by EIS under H2/H2O atmosphere. Finally, the addition of optimized GNDC into the anode functional layer (AFL) dramatically enhanced cell performance of anode-supported coin cells.

  • PDF

One-Step β-Li2SnO3 Coating on High-nickel Layered Oxides via Thermal Phase Segregation for Li-ion Batteries

  • Seongmin Kim;Hanseul Kim;Sung Wook Doo;Hee-Jae Jeon;In Hye Kim;Hyun-seung Kim;Youngjin Kim
    • Journal of Electrochemical Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.293-300
    • /
    • 2023
  • The global energy storage markets have gravitated to high-energy-density and low cost of lithium-ion batteries (LIBs) as the predominant system for energy storage such as electric vehicles (EVs). High-Ni layered oxides are considered promising next-generation cathode materials for LIBs owing to their significant advantages in terms of high energy density. However, the practical application of high-Ni cathodes remains challenging, because of their structural and surface instability. Although extensive studies have been conducted to mitigate these inherent instabilities, a two-step process involving the synthesis of the cathode and a dry/wet coating is essential. This study evaluates a one-step β-Li2SnO3 layer coating on the surface of LiNi0.8Co0.2O2 (NC82) via the thermal segregation of Sn owing to the solubility limit with respect to the synthesis temperature. The doping, segregation, and phase transition of Sn were systematically revealed by structural analyses. Moreover, surface-engineered 5 mol% Sn-coated LiNi0.8Co0.2O2 (NC82_Sn5%) exhibited superior capacity retention compared to bare NC82 owing to the stable surface coating layer. Thus, the developed one-step coating method is suitable for improving the properties of high-Ni layered oxide cathode materials for application in LIBs.

Effects of Mo co-doping into Fe doped β-Ni(OH)2 microcrystals for oxygen evolution reactions (Fe-doped β-Ni(OH)2의 산소발생반응 증가를 위한 Mo의 동시도핑효과)

  • Je Hong Park;Si Beom Yu;Tae Kwang An;Byeong Jun Kim;Jeong Ho Ryu
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.34 no.1
    • /
    • pp.30-35
    • /
    • 2024
  • In order to improve the efficiency of the water splitting system for hydrogen production, the high overvoltage in the electrochemical reaction caused by the catalyst in the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) must be reduced. Among them, transition metal-based compounds are attracting attention as catalyst materials that can replace precious metals such as platinum that are currently used. In this study, nickel foam, an inexpensive metal porous material, was used as a support, and Fe-doped β-Ni(OH)2 microcrystals were synthesized through a hydrothermal synthesis process. In addition, in order to improve OER properties, changes in the shape, crystal structure, and water splitting characteristics of Fe-Mo co-doped β-Ni(OH)2 microcrystals synthesized by co-doping with Mo were observed. The changes in the shape, crystal structure, and applicability as a catalyst for water splitting were examined.

Electrical Doping of Graphene Films by Hybridization of Nickel Nanoparticles

  • Lee, Su-Il;Song, U-Seok;Kim, Yu-Seok;Cha, Myeong-Jun;Jeong, Dae-Seong;Jeong, Min-Uk;Jeon, Cheol-Ho;Park, Jong-Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.403-403
    • /
    • 2012
  • 그래핀(graphene)은 우수한 전기적, 물리적인 특성을 지닌 물질로써 다양한 분야에서 이를 활용하려는 노력들이 활발히 진행되고 있다. 그중 그래핀을 채널로 이용하는 전계효과 트랜지스터(field effect transistor)로의 응용에 있어, 가장 핵심적인 도전과제는 전하농도(carrier concentration)의 제어 및 에너지 밴드갭(energy bandgap) 형성이라 할수 있다. 최근 다양한 물질을 이용한 도핑을 통해 이를 해결하기 위한 노력들이 진행되고 있는 추세이다. 본 연구에서는 열화학 기상 증착법(Thermal chemical vapor deposition)을 통해 합성된 단일층의 그래핀에 염화니켈 나노입자의 분산액을 스핀코팅 한후 열처리를 통해 그래핀-니켈 나노입자의 하이브리드 구조를 제작하였다. 제작된 그래핀-니켈 나노입자 하이브리드 물질의 구조적 특징을 주사 전자 현미경(Scanning electron microscope)과 원자힘 현미경(Atomic force microscopy)을 통하여 확인하였다. 또한 니켈 분산액의 농도와 도핑효과 와의 상관관계를 라만분광법(Raman spectroscopy)과 이온성 용액법(Ionic liquid)을 이용한 전계효과 특성분석을 통해 조사하였다. 나노입자의 형성 메커니즘은 X-선 광전자 분광법(X-ray photoelectron spectroscopy)을 통하여 규명하였다.

  • PDF

Synthesis of Nickel-doped Transparent Glass-ceramics for Ultra-broadband Optical Fiber Amplifiers

  • Suzuki, Takenobu;Arai, Yusuke;Ohishi, Yasutake
    • Ceramist
    • /
    • v.10 no.3
    • /
    • pp.28-33
    • /
    • 2007
  • The structural and optical properties of Ni-doped transparent glass-ceramics are reviewed. The quantum efficiencies of ceramics were examined to explore suitable crystalline phase for Ni-doping in glass-ceramics. Inverse spinel $LiGa_5O_8$ have the quantum efficiency of almost 100 % at room temperature. Transparent glass ceramics containing $LiGa_5O_8$ was successfully synthesized by heat treatment of $Li_2O-Ga_2-O_3-SiO_2-NiO$ glass. Most of $Ni^{2+}$ ions in glass-ceramic were incorporated into $LiGa_5O_8$ nanocrystals. The near-infrared emission covering from the O-band to L-band (1260-1625 nm) was observed from the Ni-doped $Li_2O-Ga_2O_3-SiO_2$ glass-ceramic though it was not observed from the as-cast glass. The lifetime of the emission was about $580\;{\mu}sec$ even at 300K. The emission quantum efficiency was evaluated as about 10 % that is enough high for practical usage as gain media of optical fiber amplifiers. The figure of merit (the product of the stimulated emission cross section and lifetime) was as high as that of rare-earth-doped glasses. The broad bandwidth, high quantum efficiency and high figure of merit show that transparent glass-ceramics containing $Ni^{2+}:LiGa_5O_8$ nanocrystals are promising candidates as novel ultra-broadband gain media.

  • PDF