• Title/Summary/Keyword: Nickel alloys

Search Result 193, Processing Time 0.023 seconds

TENSILE BOND STRENGTH OF SOLDER JOINT BETWEEN GOLD ALLOY AND NICKEL-CHROMIUM ALLOY (금합금과 Ni-Cr 합금의 납착부 인장강도)

  • Jeong, Jun-Oh;Choi, Hyeon-Mi;Choi, Jeong-Ho;Ahn, Seung-Geun;Song, Kwang-Yeob;Park, Charn-Woon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.34 no.1
    • /
    • pp.143-150
    • /
    • 1996
  • The purpose of this study was to evaluate the tensile strength of solder joint between gold alloy and nickel-chromium alloy. The specimens were made with type III gold alloys and Ni-Cr-Be alloy and Degular Lot 2 solder. Eighteen paired specimens were made, and subdivided into three groups. Group I specimens were gold alloy-gold alloy combination, Group II specimens were gold alloy-Ni-Cr alloy combination, Group III specimens were Ni-Cr alloy-Ni-Cr alloy combination. Solder block were made with solder investment(Degussa A,G, Germany) and stored in room temperature for 24 hours. To reduce the formation of metallic oxide and increase wetting properties, flux was used before preheating and soldering procedure. The specimens were preheated at $650^{\circ}C$ and flux were applied again and gas-oxygen torch was used to solder the specimen. All soldered specimens were subjected to a tensile force in the Instron universal testing machine : the crosshead speed was 1 mm/mim. Tensile strength values of three soldered joint groups were 1. Gold alloy-Gold alloy solder joint : $$48.8kg/mm^2$$ 2. Gold alloy-Ni-Cr alloy solder joint : $$30.9kg/mm^2$$ 3. Ni-Cr alloy-Ni-Cr alloy solder joint : $$31.8kg/mm^2$$ The microscopic examination of fracture site showed cohesive and combination fracture modes in gold alloy specimens, but showed all adhesive fracture modes in Ni-Cr alloy containing specimens.

  • PDF

Improvement of Electrical Properties by Controlling Nickel Plating Temperatures for All Solid Alumina Capacitors

  • Jeong, Myung-Sun;Ju, Byeong-Kwon;Oh, Young-Jei;Lee, Jeon-Kook
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.25.2-25.2
    • /
    • 2011
  • Recently, thin film capacitors used for vehicle inverters are small size, high capacitance, fast response, and large capacitance. But its applications were made up of liquid as electrolyte, so its capacitors are limited to low operating temperature range and the polarity. This research proposes using Ni-P alloys by electroless plating as the electrode instead of liquid electrode. Our substrate has a high aspect ratio and complicated shape because of anodic aluminum oxide (AAO). We used AAO because film thickness and effective surface area are depended on for high capacitance. As the metal electrode instead of electrolyte is injected into AAO, the film capacitor has advantages high voltage, wide operating temperature, and excellent frequency property. However, thin film capacitor made by electroless-plated Ni on AAO for full-filling into etched tunnel was limited from optimizing the deposition process so as to prevent open-through pore structures at the electroless plating owing to complicated morphological structure. In this paper, the electroless plating parameters are controlled by temperature in electroless Ni plating for reducing reaction rate. The Electrical properties with I-V and capacitance density were measured. By using nickel electrode, the capacitance density for the etched and Ni electroless plated films was 100 nFcm-2 while that for a film without any etch tunnel was 12.5 nFcm-2. Breakdown voltage and leakage current are improved, as the properties of metal deposition by electroless plating. The synthesized final nanostructures were characterized by scanning electron microscopy (SEM).

  • PDF

A Study on How Cyclic Casting of Base Metal Alloy for Dental Ceramic Crown May Effects upon Its Mechanical Properties and Microstructure (치과 도재용착 주조관용 비귀금속 합금의 반복주조가 기계적 특성 및 미세조직에 미치는 영향)

  • Choi, Un-Jae;Shin, Moo-Hak;Chung, Hee-Sun;Koh, Myoung-Won
    • Journal of Technologic Dentistry
    • /
    • v.25 no.1
    • /
    • pp.9-20
    • /
    • 2003
  • Using a nickel-chrome casting alloy called 'Rexillium V' which is also available as base metal alloy for dental ceramic crown, 4 types of mixtures(A, B, C, D) with old and new metal were prepared for cyclic casting. The results of cyclic casting can be outlined as follows: 1. For Vickers hardness after casting, specimen A and D tended to have lower hardness in the course of cyclic casting, while specimen B and C tended to higher hardness. 2. The results of X-ray diffraction analysis showed that major crystal phase contained nickelchrome compounds and carbide. 3. The observation results of SEM photographs after cyclic casting show that there was a significant tendency to have similar structures among experimental groups. 4. The results of EDX analysis after cyclic casting showed that there were little differences in chemical composition between parent metal and base metal alloy. Although industrial nickel-chrome cast alloy did not show any significant change in material properties even through cyclic casting over several times, it is recommended that more there be more in-depth studies on how to detect any potential corrosion, discoloration and toxication of dental ceramic crown implanted in patient's oral cavity.

  • PDF

Screw-in forces during instrumentation by various file systems

  • Ha, Jung-Hong;Kwak, Sang Won;Kim, Sung-Kyo;Kim, Hyeon-Cheol
    • Restorative Dentistry and Endodontics
    • /
    • v.41 no.4
    • /
    • pp.304-309
    • /
    • 2016
  • Objectives: The purpose of this study was to compare the maximum screw-in forces generated during the movement of various Nickel-Titanium (NiTi) file systems. Materials and Methods: Forty simulated canals in resin blocks were randomly divided into 4 groups for the following instruments: Mtwo size 25/0.07 (MTW, VDW GmbH), Reciproc R25 (RPR, VDW GmbH), ProTaper Universal F2 (PTU, Dentsply Maillefer), and ProTaper Next X2 (PTN, Dentsply Maillefer, n = 10). All the artificial canals were prepared to obtain a standardized lumen by using ProTaper Universal F1. Screw-in forces were measured using a custom-made experimental device (AEndoS-k, DMJ system) during instrumentation with each NiTi file system using the designated movement. The rotation speed was set at 350 rpm with an automatic 4 mm pecking motion at a speed of 1 mm/sec. The pecking depth was increased by 1 mm for each pecking motion until the file reach the working length. Forces were recorded during file movement, and the maximum force was extracted from the data. Maximum screw-in forces were analyzed by one-way ANOVA and Tukey's post hoc comparison at a significance level of 95%. Results: Reciproc and ProTaper Universal files generated the highest maximum screw-in forces among all the instruments while M-two and ProTaper Next showed the lowest (p < 0.05). Conclusions: Geometrical differences rather than shaping motion and alloys may affect the screw-in force during canal instrumentation. To reduce screw-in forces, the use of NiTi files with smaller cross-sectional area for higher flexibility is recommended.

Deformation and Failure Behavior during Thermo-Mechanical Fatigue of a Nickel-Based Single Crystal Superalloy (열기계적 피로에 따른 단결정 니켈기 초내열합금의 변형 및 파괴거동)

  • Kang, Jeong Gu;Hong, Hyun Uk;Choi, Baig Gyu;Kim, In Soo;Kang, Nam Hyun;Jo, Chang Yong
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.2
    • /
    • pp.112-120
    • /
    • 2011
  • The out-of-phase thermo-mechanical fatigue (OP TMF) in a <001> oriented single crystal nickel-based superalloy CMSX-4 has been studied. OP TMF life was less than a half of low cycle fatigue(LCF) life in spite of a small hysteresis loop area of OP TMF compared to that of LCF. The failure was caused by the initiation of a crack at the oxide-layered surface followed by its planar growth along the <100> ${\gamma}$ channel in both LCF and OP TMF. However, deformation twins appeared near the major crack of OP TMF. The multiple groups of parallel twin plates on {111} planes provided a preferential path for crack propagation, which caused a significant decrease in OP TMF life. Additionally, the analysis on the surface crack morphology revealed that the tensile strain at the minimum temperature of OP TMF was found to accelerate the crack propagation.

MODIFICATION OF METAL MATERIALS BY HIGH TEMPERATURE PULSED PLASMA FLUXES IRRADIATION

  • Vladimir L. Yakushin;Boris A. Kalin;Serguei S. Tserevitionov
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.1-1
    • /
    • 2000
  • The results of the modification of metal materials treated by high temperature pulst:d plasma fluxes (HTlPPF) with a specific power of incident flux changing in the $(3...100)10^5{]\;}W/cm^2$ range and a pulse duration lying from 15 to $50{\;}\mu\textrm{s}$ have been presented. The results of HTPPF action were studied on the stainless steels of 18Cr-l0Ni, 16Cr- 15Ni, 13Cr-2Mo types; on the structural carbon steels of (13...35)Cr, St. 3, St. 20, St. 45 types; on the tool steels of U8, 65G, ShHI5 types, and others; on nickel and high nickel alloy of 20Cr-45Ni type; on zirconium- and vanadium-base alloys and other materials. The microstructure and properties (mechanical, tribological, erosion, and other properties) of modified materials and surface alloying of metals exposed to HTPPF action have been investigated. It was found that the modification of materials by HTPPF resulted in a simultaneous increase of several properties of the treated articles: microhardness of the surface and layers of 40...60 $\mu\textrm{m}$ in depth, tribological characteristics (friction coefficient, wear resistance), mechanical properties ({\sigma_y}, {\;}{\sigma_{0.2}}.{\;}{\sigma_r}) on retention of the initial plasticity ($\delta$), corrosion resistance, radistanation erosion under ion irradiation, and others. The determining factor of the changes observed is the structural-phase modification of the near-surface layers, in particular, the formation of the fine cellular structure in the near-surface layers at a depth of $20{\;}{\mu\textrm{m}}$ with dimension of cells changing in the range from 0.1 to $1., 5{\;}\mu\textrm{m}$, depending on the kind of material, its preliminary treatment, and the parameters of plasma fluxes. The remits obtained have shown the possibility of purposeful surface alloying of metals exposed to HTPPF action over a depth up to 20...45 $\mu\textrm{m}$ and the concentration of alloying element (Ni, Cr, V) up to 20 wt.%. Possible industrial brunches for using the treatment have been also considered, as well as some results on modifying the serial industrial articles by HTPPF.

  • PDF

Estimation of a Lattice Parameter of Sintered Ni-W Alloy Rods by a Neutron Diffraction Method (중성자 회절법에 의한 Ni-W 합금 소결체의 격자상수 측정)

  • Kim, Chan-Joong;Kim, Min-Woon;Park, Soon-Dong;Jun, Byung-Hyuk;Jang, Serk-Won;Seong, Baek-Seok
    • Journal of Powder Materials
    • /
    • v.15 no.3
    • /
    • pp.239-243
    • /
    • 2008
  • Ni-W(1-5 at.%) alloy rods were made by powder metallurgy process including powder mixing, compacting and subsequent sintering. Ni and W powder of appropriate compositions were mixed by a ball milling and isostatically pressed in a rubber mold into a rod. The compacted rods were sintered at $1000^{\circ}C-1150^{\circ}C$ at a reduced atmosphere for densification. The lattice parameters of Ni-W alloys were estimated by a high resolution neutron powder diffractometer. All sintered rods were found to have a face centered cubic structure without any impurity phase, but the diffraction peak locations were linearly shifted with increasing W content. The lattice parameter of a pure Ni rod was $3.5238{\AA}$ which is consistent with the value reported in JCPDS data. The lattice parameter of N-W alloy rods increased by $0.004{\AA}$ for 1 atomic % of W, which indicates the formation of a Ni-W solid solution due to the substitution of nickel atoms by tungsten atoms of larger size.

In-situ Raman Spectroscopic Study of Nickel-base Alloys in Nuclear Power Plants and Its Implications to SCC

  • Kim, Ji Hyun;Bahn, Chi Bum;Hwang, Il Soon
    • Corrosion Science and Technology
    • /
    • v.3 no.5
    • /
    • pp.198-208
    • /
    • 2004
  • Although there has been no general agreement on the mechanism of primary water stress corrosion cracking (PWSCC) as one of major degradation modes of Ni-base alloys in pressurized water reactors (PWR's), common postulation derived from previous studies is that the damage to the alloy substrate can be related to mass transport characteristics and/or repair properties of overlaid oxide film. Recently, it was shown that the oxide film structure and PWSCC initiation time as well as crack growth rate were systematically varied as a function of dissolved hydrogen concentration in high temperature water, supporting the postulation. In order to understand how the oxide film composition can vary with water chemistry, this study was conducted to characterize oxide films on Alloy 600 by an in-situ Raman spectroscopy. Based on both experimental and thermodynamic prediction results, Ni/NiO thermodynamic equilibrium condition was defined as a function of electrochemical potential and temperature. The results agree well with Attanasio et al.'s data by contact electrical resistance measurements. The anomalously high PWSCC growth rate consistently observed in the vicinity of Ni/NiO equilibrium is then attributed to weak thermodynamic stability of NiO. Redox-induced phase transition between Ni metal and NiO may undermine the integrity of NiO and enhance presumably the percolation of oxidizing environment through the oxide film, especially along grain boundaries. The redox-induced grain boundary oxide degradation mechanism has been postulated and will be tested by using the in-situ Raman facility.

XU-TEC PROCESS AND XU-TEC SAW BLADES

  • Xu, Z.;Gao, Y.;Wang, C.Z.;Su, Y.A.;Tang, B.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1995.06a
    • /
    • pp.154-154
    • /
    • 1995
  • The Xu-Tec process is also called the double glow surface alloying technology and is a new method of surface metallurgy which can produce an alloy layers with sp ecial phisical and chemical properties on the surface of common and inexpensive mater ials. Many super alloys and alloy steels, sueh as nickel base alloys, high speed steels and staiinless steels, have been produced by Xu-Tee Process on the surfaces of carbon steels. The depth of the alloy lasyers may vary from several microns up to 300 micr ons with alloying elements in a concentration of few percentage to 100%. World wide patents for Xu-Tec process have been granted in the United states, Canada, United Ki ngdom, Australia and Japan. High performance saw blades have been successfully produced by the Xu-Tee process with much simper processing steps and less cost than bimetal high speed saw blades. A comparison of the cutting times and wear rates of the Xu-Tee blades with the conventional bimetal blades has been made. The Xu-Tee bIases demonstrates sim ilar or better performance than bimetal blades. A Xu-Tec Unit for the commercial pr oduction of Xu-Tec saw blades has been designed and manufactured. This Unit can t reat 10,000 haek saw blades at one time. Three Xu-Tec hack saw blades production I ines have been set up in China. China.

  • PDF

Investigation on Size Distribution of Tungsten-based Alloy Particles with Solvent Viscosity During Ultrasonic Ball Milling Process (초음파 볼밀링 공정에 의한 용매 점도 특성에 따른 텅스텐계 합금 분쇄 거동)

  • Ryu, KeunHyuk;So, HyeongSub;Yun, JiSeok;Kim, InHo;Lee, Kun-Jae
    • Journal of Powder Materials
    • /
    • v.26 no.3
    • /
    • pp.201-207
    • /
    • 2019
  • Tungsten heavy alloys (W-Ni-Fe) play an important role in various industries because of their excellent mechanical properties, such as the excellent hardness of tungsten, low thermal expansion, corrosion resistance of nickel, and ductility of iron. In tungsten heavy alloys, tungsten nanoparticles allow the relatively low-temperature molding of high-melting-point tungsten and can improve densification. In this study, to improve the densification of tungsten heavy alloy, nanoparticles are manufactured by ultrasonic milling of metal oxide. The physical properties of the metal oxide and the solvent viscosity are selected as the main parameters. When the density is low and the Mohs hardness is high, the particle size distribution is relatively high. When the density is high and the Mohs hardness is low, the particle size distribution is relatively low. Additionally, the average particle size tends to decrease with increasing viscosity. Metal oxides prepared by ultrasonic milling in high-viscosity solvent show an average particle size of less than 300 nm based on the dynamic light scattering and scanning electron microscopy analysis. The effects of the physical properties of the metal oxide and the solvent viscosity on the pulverization are analyzed experimentally.