• Title/Summary/Keyword: Nickel Superalloy

Search Result 53, Processing Time 0.033 seconds

A Study on Relationship between Hot Ductility Behavior and Hot Cracking Susceptibility in PTA Weld of Ni-based Superalloy (니켈기 초내열합금 PTA용접부의 고온균열감수성과 고온연성거동에 관한 연구)

  • Lee, Chung-Rae;Kim, Sung-Wook;Choi, Woo-Hyuk;Eom, Sang-Ho;Lee, Chang-Hee;Kim, Jae-Chul;Choi, Chul
    • Proceedings of the KWS Conference
    • /
    • 2003.05a
    • /
    • pp.40-42
    • /
    • 2003
  • In general, nickel-base superalloy has been extensively used as land-based gas turbine blades and vanes. Plasma transferred arc welding(PTAW) has been considered as a repair welding process of nickel-base superalloy. This research evaluated the relationship between hot ductility behavior and hot cracking susceptibility in nickel-base superalloys. Ductility recovery rate of nickel base superalloys was found to be poor due to incipient melting and constitutional liquation. This seems to increase the hot cracking susceptibility.

  • PDF

Thermal Analysis of Silicon Carbide Coating on a Nickel based Superalloy Substrate and Thickness Measurement of Top Layers by Lock-in Infrared Thermography

  • Ranjit, Shrestha;Kim, Wontae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.37 no.2
    • /
    • pp.75-83
    • /
    • 2017
  • In this paper, we investigate the capacity of the lock-in infrared thermography technique for the evaluation of non-uniform top layers of a silicon carbide coating with a nickel based superalloy sample. The method utilized a multilayer heat transfer model to analyze the surface temperature response. The modelling of the sample was done in ANSYS. The sample consists of three layers, namely, the metal substrate, bond coat and top coat. A sinusoidal heating at different excitation frequencies was imposed upon the top layer of the sample according to the experimental procedures. The thermal response of the excited surface was recorded, and the phase angle image was computed by Fourier transform using the image processing software, MATLAB and Thermofit Pro. The correlation between the coating thickness and phase angle was established for each excitation frequency. The most appropriate excitation frequency was found to be 0.05 Hz. The method demonstrated potential in the evaluation of coating thickness and it was successfully applied to measure the non-uniform top layers ranging from 0.05 mm to 1 mm with an accuracy of 0.000002 mm to 0.045 mm.

LASER WELDING OF SINGLE CRYSTAL NICKEL BASE SUPERALLOY CMSX-4

  • Yanagawa, Hiroto;Nakamura, Daisuke;Hirose, Akio;Kobayashi, Kojiro F.
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.193-198
    • /
    • 2002
  • In 1his paper, applicability of laser welding to joining process of single crystal nickel base superalloy turbine blades was investigated. Because heat input of laser welding is more precisely controlled 1han TIG welding, it is possible to optimize solidification microstructure of the welds. Since in single crystal nickel base superalloy the crystal orientation have a significant effect on the strength, it is important to control the solidification microstructure in the fusion zone. A single crystal nickel base supera1loy, CMSX-4, plates were bead-on welded and butt welded using a $CO_2$ laser. The effects of microstructure and crystal orientation on properties of the weld joints were investigated. In bead-on weldling, welding directions were deviated from the base metal [100] direction by 0, 5, 15 and 30 degrees. The welds with deviation angles of 15 and 30 degrees showed fusion zone transverse cracks. As the deviation angles became larger, the fusion zone had more cracking. In the cross section microstructure, the fusion zone grains in 0 and 5 degrees welds grew epitaxially from the base metal spins except for the bead neck regions. The grains in the bead neck regions contained stray crystals. As deviation angles increased, number of the stray crystals increased. In butt welding, the declinations of the crystal orientation of the two base metals varied 0, 5 and 10 degrees. All beads had no cracks. In the 5 degrees bead, the cross section and surface microstructures showed that the fusion zone grains grew epitaxially from the base metal grains. However, the 10 degrees bead, the bead cross section and surface contained the stray crystals in the center of the welds. Orientations of the stray crystals accorded with the heat flow directions in the weld pool. When the welding direction was deviated from the base metal [100] direction, cracks appeared in the area including the stray crystals. The cracks developed along the grain boundaries of the stray crystals with high angles in the final solidification regions at the center of the welds. The fracture surfaces were covered with liquid film. The cracks, therefore, found to be solidification cracks due to the presence of low melting eutectic. As the results, in both bead-on welding and butt welding the deviation angles should be control within 5 degrees for preventing the fusion zone cracks. To investigate the mechanical properties of the weld joints, high temperature tensile tests for bead-on welds with deviation angles of 0 and 5 degrees and the butt welds with dec1ination angles of 0, 5 and 10 degrees were conducted at 1123K. The the tensile strength of all weld joints were more 1han 800MPa that is almost 80% of the tensile strength of the base metal. The strength of the laser weld joints were more than twice that of tue TIG weld joints with a filler metal of Inconel 625. The results reveals 1hat laser welding is more effective joining process for single crystal nickelbase superalloy turbine blades 1han TIG welding.

  • PDF

Evaluation of Fatigue Crack Propagation Behavior of Nickel-based Powder Metallurgy Superalloy for Aircraft at Elevated Temperature (항공기 터빈 디스크용 니켈기 초내열 분말야금 합금의 고온 피로균열진전 거동 비교 평가)

  • Yoon, Dong Hyun;Na, Seong Hyeon;Kim, Jae Hoon;Kim, Hongkyu;Kim, Donghoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.8
    • /
    • pp.751-758
    • /
    • 2017
  • The behavior of fatigue crack growth of nickel-based powder metallurgy superalloy that could be used in aircraft turbine disc is investigated at room temperature, and $650^{\circ}C$ considering real operating conditions. The direct current potential drop(DCPD) method was used to measure the crack length of material in real time according to ASTM E647. Tests were performed with various stress ratios (0.1 and 0.5). Experimental results show that stress ratio, and temperature all affect the behavior of fatigue crack growth. As the stress ratio and temperature increase, the fatigue crack growth rate of nickel-based powder metallurgy superalloy also increases. Results were compared and reviewed with fatigue crack growth rates of other nickel-based superalloy materials (Inconel-100) that were studied in previous papers. Fractography analysis of the fractured specimens was performed using as SEM.

Thermo-Mechancal Fatigue of the Nickel Base Superalloy IN738LC for Gas Turbine Blades (가스터빈 블레이드용 IN738LC의 열기계피로수명에 관한 연구)

  • Fleury, E.;Ha, J.S.;Hyun, J.S.;Jang, S.W.;Jung, H.
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.188-193
    • /
    • 2000
  • A more accurate life prediction for gas turbine blade takes into account the material behavior under the complex thermo-mechanical fatigue(TMF) cycles normally encountered in turbine operation. An experimental program has been carried out to address the thermo-mechanical fatigue life of the IN738LC nickel-base superalloy. In the first phase of the study, out-of-phase and in-phase TMF experiments have been performed on uncoated and coated materials. In the temperature range investigated. the deposition of NiCrAlY air plasma sprayed coating did not affect the fatigue resistance. In the second phase of the study, a physically-base life prediction model that takes into account of the contribution of different damage mechanisms has been applied. This model was able to reflect the temperature and strain rate dependences of isothermal cycling fatigue lives, and the strain-temperature history effect on the thermo-mechanical fatigue lives.

  • PDF

Mechanical Properties for Welding Part on Ni Base Superalloy Material According to Heat Treatment Parameters (열처리조건에 따른 Ni기지 초합금 용접부의 기계적 특성)

  • Yang, Sung-Ho;Park, Sang-Yeol;Choi, Hee-Sook;Ko, Won;Chae, Na-Hyun;Kim, Moon-Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.4
    • /
    • pp.525-531
    • /
    • 2007
  • The operating temperature has been increased to improve the efficiency of gas turbine. The most advanced Gas turbine is operated at above $1,500^{\circ}C$. Improvement in material and cooling method permit hot gas path component to run at increased temperature. But, the repair of blades which are developed with advanced manufacture technique is difficult to use normal welding. Most of gas turbine blades are made of precipitation harden nickel base superalloy, which is very hard to weld. Therefore, the employment of welding filler on blade is solid solution nickel base superalloy(Hastelloy X, Inconel 617). In this study, Tensile test in high temperature was conducted on welded GTD111DS with GTD111 to evaluate effect of variation of pre, post treatment. The result of this study showed that the specimen was treated with optimum pre and post treatment(preweld HT($1200^{\circ}C$), Post treatment($1100^{\circ}C$ HIP, $1200^{\circ}C$ + $1100^{\circ}C$ + $800^{\circ}C$ HT) is mush superior.

Process Design in Superplastic Forging of a Jet Engine Disk by the Finite Element Method (유한요소법을 이용한 제트엔진 디스크의 초소성 단조공정설계)

  • 이진희;강범수;김왕도
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.4
    • /
    • pp.876-886
    • /
    • 1994
  • Process design in superplastic forming to produce a Nickel-base jet engine disk has been carried out using the rigid-viscoplastic finite element method. This study aims at deriving systematic procedures in forging of superalloy engine disk, and develops a simple scheme to control strainrate within a range of superplastic deformation during the forging operation. The new process, a pancake type preform being used, is designed to have less manufacturing time, and more even distribution of effective strain in the final product, while the conventional superplastic forging of an engine disk has been produced from a cylindrical billet. The jet engine company, Pratt & Whitney, provided the basic information on the manufacturing process of superplastic forging of a jet engine disk.

Production of Fine Cobalt Metal Powders from Superalloy Scrap(1) (Treating Superalloy Scrap with Zinc) (Superalloy 스크랩으로부터 Co 미분말의 제조(1) (Superalloy 스크랩의 아연처리))

  • 박문경;이영근
    • Resources Recycling
    • /
    • v.4 no.1
    • /
    • pp.52-59
    • /
    • 1995
  • Treating bulk superalloy scrap with molten zinc has been studled to facililate recycling and recovery- of cobalt.Superalloys investigated were the cobalt-base Mar-M-509 and X45 and the nickel-base Rene 80. Charges withZnlscrap ratlos of 1.5-6.5 were heated to 750-9002 far 1-7.5 hours in a nitrogen atmosphere. The moltenzinc dissolved superalloy scrap and zinc was removed by vacuum distillation at 850-Wk for 4-6 hours. Ithas been concluded that the optimum conditions of decomposition for Mar-M-509 and Rene 80 \"ere dissolutiontemperature of about 850k, Znlscrap ratlo of about 5, and dissalution time of about 5.5 hours. The zinc-treatedsuperalloy prouducts were friable and reacted rapidly with acid solutions. Leaching 9mm pieces of unalloyedMar-M-509 or Rene 80 with 5 times the stolchlometric amount oi 6N HCI at 90t ior 3 hours dissolved about1.5-7.270, while leachmg of the minus 20-mesh products dissolved about 89.0-93.0%.ved about 89.0-93.0%.

  • PDF