DOI QR코드

DOI QR Code

Evaluation of Fatigue Crack Propagation Behavior of Nickel-based Powder Metallurgy Superalloy for Aircraft at Elevated Temperature

항공기 터빈 디스크용 니켈기 초내열 분말야금 합금의 고온 피로균열진전 거동 비교 평가

  • Yoon, Dong Hyun (Dept. of Mechanical Engineering, Chungnam Nat'l Univ.) ;
  • Na, Seong Hyeon (Dept. of Mechanical Engineering, Chungnam Nat'l Univ.) ;
  • Kim, Jae Hoon (Dept. of Mechanical Engineering, Chungnam Nat'l Univ.) ;
  • Kim, Hongkyu (The 4th R&D Institute - 4th Directorate, Agency for Defense Development) ;
  • Kim, Donghoon (The 4th R&D Institute - 4th Directorate, Agency for Defense Development)
  • Received : 2017.01.04
  • Accepted : 2017.04.12
  • Published : 2017.08.01

Abstract

The behavior of fatigue crack growth of nickel-based powder metallurgy superalloy that could be used in aircraft turbine disc is investigated at room temperature, and $650^{\circ}C$ considering real operating conditions. The direct current potential drop(DCPD) method was used to measure the crack length of material in real time according to ASTM E647. Tests were performed with various stress ratios (0.1 and 0.5). Experimental results show that stress ratio, and temperature all affect the behavior of fatigue crack growth. As the stress ratio and temperature increase, the fatigue crack growth rate of nickel-based powder metallurgy superalloy also increases. Results were compared and reviewed with fatigue crack growth rates of other nickel-based superalloy materials (Inconel-100) that were studied in previous papers. Fractography analysis of the fractured specimens was performed using as SEM.

항공기 터빈 디스크에 사용될 수 있는 니켈기 초내열 분말야금 합금의 피로균열진전 거동이 실제운전 환경을 고려하여 상온 및 $650^{\circ}C$에서 연구되었다. ASTM E647에서 제시하는 직류전위차법을 이용하여 실시간으로 균열의 진전을 측정하였다. 또한 피로균열진전 시험은 응력비 0.1과 0.5의 두가지 조건에서 수행되었다. 시험결과들은 응력비와 온도 조건 모두 피로균열진전 거동에 영향이 있음을 보여주었으며, 응력비와 온도가 증가함에 따라, 니켈기 초내열 분말 야금 합금의 피로균열성장 속도는 증가하게 관찰되었다. 본 연구에서 사용된 니켈기 초내열 분말 야금 합금은 현재 개발 중인 소재로써 보다 정량적인 시험결과의 분석을 위해, 본 연구의 피로균열진전 시험결과와 기존에 연구된 Inconel-100 소재의 피로균열진전거동에 대한 상호 비교분석이 수행되었다. 피로균열진전 파단면의 분석은 SEM 촬영을 통하여 수행하였다.

Keywords

References

  1. Nahm, S. H., Park, J. H. and Kim, J. Y., 2001, "A Study on the Prediction of Crack Growth Life of Gas Turbine Engine Disk under Creep-Fatigue Loading Condition," The Korean Society of Mechanical Engineers, pp. 172-177.
  2. Huh, J. S., 2012, "A Study on the Structural Integrity of Gas Turbine Engine Disc by Non- Linear Analysis," The Korean Society of Propulsion Engineers, pp. 671-674.
  3. Nahm, S. H., Park, J. H., Kim, J. Y. and Mai, Y. W., 2002, "Life Evaluation of Gas Turbine Engine Disk based on Retirement for Cause Concept," Trans. Korean Soc. Mech. Eng. A, Vol. 26, No. 2, pp. 365-373. https://doi.org/10.3795/KSME-A.2002.26.2.365
  4. Oh, Y. J., Kim, J. H. and Hwang, I. S., 2002, "Dynamic Loading Fracture Tests of Ferritic Steel Using Direct Current Potential Drop Method," Journal of Testing and Evaluation, Vol. 30, No. 3, pp. 221-227. https://doi.org/10.1520/JTE12309J
  5. Jeong, D. H., Choi, M.J., Masahiro G., Lee, H. C. and Kim, S. S., 2014, "Effect of Service Exposure on Fatigue Crack Propagation of Inconel 718 Turbine Disc Material at Elevated Temperatures," Materials Characterization, Vol. 95, pp. 232-244. https://doi.org/10.1016/j.matchar.2014.06.022
  6. Yang, H., Bao, R., Zhang, J., Peng, L. and Fei, B., 2011, "Crack Growth Behaviour of a Nickel-based Powder Metallurgy Superalloy under Elevated Temperature," International Journal of Fatigue, Vol. 33, No. 4, pp. 632-641. https://doi.org/10.1016/j.ijfatigue.2010.11.003
  7. Yang, H., Bao, R., Zhang, J., Peng, L. and Fei, B., 2011, "Creep-fatigue Crack Growth Behaviour of a Nickel-based Powder Metallurgy Superalloy under High Temperature," Engineering Failure Analysis, Vol. 18, No. 3, pp. 1058-1066. https://doi.org/10.1016/j.engfailanal.2010.12.025
  8. ASTM Standard E647-13a, 2013, "Standard Test Method for Measurement of Fatigue Crack Growth Rates," ASTM International.
  9. Park, K. D., Jung, J. G. and Kim, J. H., 2001, "Effect of Stress Ration on Fatigue Crack Propagation Behavior of Pressure Vessel Steel SA516-Grade70 at High Temperature," Journal of the Korean Society of Marine Engineering, Vol. 25, pp. 164-170.
  10. Manson, S. S., 1979, "Aerospace Structural Metals Handbook, Fourth Quarter - Nonferrous Alloys," Vol. 5.
  11. Kang, C. Y., 2004, "Fracture Mechanism and Micro Practography - Intergranular Fracture and Fracture at High Temperature," Journal of KWS, Vol. 22, No. 3, pp. 6-8.