• Title/Summary/Keyword: Nickel Sandwich Structure

Search Result 6, Processing Time 0.02 seconds

Improvement of Thermal Stability of Nickel Silicide Under the Influence of Nickel Sandwich Structure (니켈 sandwich구조에 의한 니켈실리사이드의 열안정성의 개선)

  • Kim, Yong-Jin;Oh, Soon-Young;Yun, Jang-Gn;Huang, Bin-Feng;Ji, Hee-Hwan;Kim, Yong-Goo;Wang, Jin-Suk;Lee, Hi-Deok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.45-48
    • /
    • 2004
  • 본 논문은 니켈실리사이드 (Ni-Silicide)의 열안정성을 개선하기 위해서 Ti와 TiN capping 층을 이용한 새로운 구조 Ni/Ti/Ni/Tin 구조를 제안하였다. 계면특성과 열안정성을 향상시키기 위해 타이타늄(Ti)을 니켈(Nickel) 사이에 적용하고, 니켈 실리사이드 형성 시 산소와의 반응을 억제하여 실리사이드의 응집현상을 개선시키고자 TiN capping을 적용 하였다. 니켈 실리사이드의 형성온도에 따른 $NiSi_2$로의 상변이를 억제할 수 있었고, 열안정성 평가를 위한 $700^{\circ}C$, 30분간 고온 열처리에서도 제안한 구조로 니켈실리사이드의 단면특성과 19 % 정도 면저항 특성을 개선하였다.

  • PDF

Study of a Betavoltaic Battery Using Electroplated Nickel-63 on Nickel Foil as a Power Source

  • Uhm, Young Rang;Choi, Byoung Gun;Kim, Jong Bum;Jeong, Dong-Hyuk;Son, Kwang Jae
    • Nuclear Engineering and Technology
    • /
    • v.48 no.3
    • /
    • pp.773-777
    • /
    • 2016
  • A betavoltaic battery was prepared using radioactive $^{63}Ni$ attached to a three-dimensional single trenched P-N absorber. The optimum thickness of a $^{63}Ni$ layer was determined to be approximately $2{\mu}m$, considering the minimum self-shielding effect of beta particles. Electroplating of radioactive $^{63}Ni$ on a nickel (Ni) foil was carried out at a current density of $20mA/cm^2$. The difference of the short-circuit currents ($I_{sc}$) between the pre- and post-deposition of $^{63}Ni$ (16.65 MBq) on the P-N junction was 5.03 nA, as obtained from the I-V characteristics. An improved design with a sandwich structure was provided for enhancing performance.

Fabrication of Nickel Oxide Film Microbolometer Using Amorphous Silicon Sacrificial Layer (비정질 실리콘 희생층을 이용한 니켈산화막 볼로미터 제작)

  • Kim, Ji-Hyun;Bang, Jin-Bae;Lee, Jung-Hee;Lee, Yong Soo
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.6
    • /
    • pp.379-384
    • /
    • 2015
  • An infrared image sensor is a core device in a thermal imaging system. The fabrication method of a focal plane array (FPA) is a key technology for a high resolution infrared image sensor. Each pixels in the FPA have $Si_3N_4/SiO_2$ membranes including legs to deposit bolometric materials and electrodes on Si readout circuits (ROIC). Instead of polyimide used to form a sacrificial layer, the feasibility of an amorphous silicon (${\alpha}-Si$) was verified experimentally in a $8{\times}8$ micro-bolometer array with a $50{\mu}m$ pitch. The elimination of the polyimide sacrificial layer hardened by a following plasma assisted deposition process is sometimes far from perfect, and thus requires longer plasma ashing times leading to the deformation of the membrane and leg. Since the amorphous Si could be removed in $XeF_2$ gas at room temperature, however, the fabricated micro-bolomertic structure was not damaged seriously. A radio frequency (RF) sputtered nickel oxide film was grown on a $Si_3N_4/SiO_2$ membrane fabricated using a low stress silicon nitride (LSSiN) technology with a LPCVD system. The deformation of the membrane was effectively reduced by a combining the ${\alpha}-Si$ and LSSiN process for a nickel oxide micro-bolometer.

Effect of Ni Interlayer on the Methanol Gas Sensitivity of ITO Thin Films

  • Lee, Y.J.;Huh, S.B.;Lee, H.M.;Shin, C.H.;Jeong, C.W.;Chae, J.H.;Kim, Y.S.;Kim, Daeil
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.23 no.5
    • /
    • pp.245-248
    • /
    • 2010
  • Sn doped $In_2O_3$ (ITO) and ITO/Ni/ITO (INI) multilayer films were deposited on the glass substrates with a reactive magnetron sputtering system without intentional substrate heating and then the influence of the Ni interlayer on the methanol gas sensitivity of ITO and INI film sensors were investigated. Although both ITO and INI film sensors have the same thickness of 100 nm, INI sensors have a sandwich structure of ITO 50 nm/Ni 5 nm/ITO 45 nm. The changes in the gas sensitivity of the film sensors caused by methanol gas ranging from 100 to 1000 ppm were measured. It is observed that the INI film sensors show the higher sensitivity than that of the ITO single layer sensors. Finally, it can be concluded that the INI film sensor have the potential to be used as improved methanol gas sensors.

Analysis of Bonding Characteristics of Ag-System Brazing Filler Metal (은계 필러메탈 브레이징 접합부의 특성 분석)

  • Soon-Gil Lee;Hwa-In Lee;Jin-Oh Son;Gwang-Il Ha;Bon-Heun Koo
    • Korean Journal of Materials Research
    • /
    • v.33 no.5
    • /
    • pp.214-221
    • /
    • 2023
  • As a filler metal for lowering the melting point of Ag, many alloy metal candidates have emerged, such as cadmium, with zinc, manganese, nickel, and titanium as active metals. However, since cadmium is known to be harmful to the human body, Cd-free filler metals are now mainly used. Still, no study has been conducted comparing the characteristics of joints prepared with and without cadmium. In addition, studies have yet to be conducted comparing the typical characteristics of brazing filler metals with special structures, and the joint characteristics of brazing filler metals with available frames. In this study, the characteristics of junctions of silver-based intercalation metals were compared based on the type of filler metal additives, using a special structure, a filler metal sandwich structure, to protect the internal base metal. The general filler metal was compared using the structure, and the thickness of the filler metal according to the thickness was reached. A comparison of the characteristics of the junction was conducted to identify the characteristics of an intersection of silver-based brazing filler metal and the effect on joint strength. Each filler metal's collective tensile strength was measured, and the relationship between joint characteristics and tensile joint strength was explored. The junction was estimated through micro strength measurement, contact angle measurement with the base metal when the filler metal was melted, XRD image observation, composition analysis for each phase through SEM-EDS, and microstructure phase acquisition.

Effect of Intermediate Metal on the Methanol Gas Sensitivity of ITO Thin Films (층간금속층에 따른 ITO 박막의 메탄올 검출민감도 개선 효과)

  • Lee, H.M.;Heo, S.B.;Kong, Y.M.;Kim, Dae-Il
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.3
    • /
    • pp.195-199
    • /
    • 2011
  • ITO thin films and gold (Au), copper (Cu) and nickel (Ni) intermediate ITO multilayer (ITO/Au/ITO, ITO/Cu/ITO, ITO/Ni/ITO) films were deposited on glass substrates with a reactive radio frequency and direct current magnetron sputtering system and then the effect of intermediate metal layer and annealing temperature on the methanol gas sensitivity of ITO films were investigated. Although both ITO and ITO/metal/ITO (IMI) film sensors have the same total thickness of 100 nm, IMI sensors have a sandwich structure of ITO 50 nm/metal 10 nm/ITO 40 nm. The change in the gas sensitivity of the film sensors caused by methanol gas ranging from 100 to 1000 ppm was measured at room temperature. The IAI film sensors showed the higher sensitivity than the other sensors. Finally, it is concluded that the ITO 50/Au 10/ITO 40 nm film sensors hasthe potential to be used as improved methanol gas sensor.