• Title/Summary/Keyword: Nickel Ion

Search Result 273, Processing Time 0.028 seconds

MODIFICATION OF METAL MATERIALS BY HIGH TEMPERATURE PULSED PLASMA FLUXES IRRADIATION

  • Vladimir L. Yakushin;Boris A. Kalin;Serguei S. Tserevitionov
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.1-1
    • /
    • 2000
  • The results of the modification of metal materials treated by high temperature pulst:d plasma fluxes (HTlPPF) with a specific power of incident flux changing in the $(3...100)10^5{]\;}W/cm^2$ range and a pulse duration lying from 15 to $50{\;}\mu\textrm{s}$ have been presented. The results of HTPPF action were studied on the stainless steels of 18Cr-l0Ni, 16Cr- 15Ni, 13Cr-2Mo types; on the structural carbon steels of (13...35)Cr, St. 3, St. 20, St. 45 types; on the tool steels of U8, 65G, ShHI5 types, and others; on nickel and high nickel alloy of 20Cr-45Ni type; on zirconium- and vanadium-base alloys and other materials. The microstructure and properties (mechanical, tribological, erosion, and other properties) of modified materials and surface alloying of metals exposed to HTPPF action have been investigated. It was found that the modification of materials by HTPPF resulted in a simultaneous increase of several properties of the treated articles: microhardness of the surface and layers of 40...60 $\mu\textrm{m}$ in depth, tribological characteristics (friction coefficient, wear resistance), mechanical properties ({\sigma_y}, {\;}{\sigma_{0.2}}.{\;}{\sigma_r}) on retention of the initial plasticity ($\delta$), corrosion resistance, radistanation erosion under ion irradiation, and others. The determining factor of the changes observed is the structural-phase modification of the near-surface layers, in particular, the formation of the fine cellular structure in the near-surface layers at a depth of $20{\;}{\mu\textrm{m}}$ with dimension of cells changing in the range from 0.1 to $1., 5{\;}\mu\textrm{m}$, depending on the kind of material, its preliminary treatment, and the parameters of plasma fluxes. The remits obtained have shown the possibility of purposeful surface alloying of metals exposed to HTPPF action over a depth up to 20...45 $\mu\textrm{m}$ and the concentration of alloying element (Ni, Cr, V) up to 20 wt.%. Possible industrial brunches for using the treatment have been also considered, as well as some results on modifying the serial industrial articles by HTPPF.

  • PDF

Application of nickel hexacyanoferrate and manganese dioxide-polyacrylonitrile (NM-PAN) for the removal of Co2+, Sr2+ and Cs+ from radioactive wastewater

  • Md Abdullah Al Masud;Won Sik Shin
    • Membrane and Water Treatment
    • /
    • v.15 no.2
    • /
    • pp.67-78
    • /
    • 2024
  • In this study, a nickel hexacyanoferrate and manganese dioxide-polyacrylonitrile (NM-PAN) composite was synthesized and used for the sorptive removal of Co2+, Sr2+, and Cs+ Cs+ in radioactive laundry wastewater. Single- and multi-solute competitive sorptions onto NM-PAN were investigated. The Freundlich (Fr), Langmuir (Lang), Kargi-Ozmıhci (K-O), Koble-Corrigan (K-C), and Langmuir-Freundlich (Lang-Fr) models satisfactorily predicted all the single sorption data. The sorption isotherms were nonlinearly favorable (Freundlich coefficient, NF = 0.385-0.426). Cs+ has the highest maximum sorption capacity (qmL = 0.855 mmol g-1) for NM-PAN compared to Co2+ and Sr2+, wherein the primary mechanism was the physical process (mainly ion-exchange). The competition between the metal ions in the binary and ternary systems reduced the respective sorption capacities. Binary and ternary sorption models, such as the ideal adsorbed solution theory (IAST) model coupled with single sorption models of IAST-Fr, IAST-K-O, IAST-K-C and IAST-Lang-Fr, were fitted to the experimental data; among these, the IAST-Freundlich model showed the most satisfactory prediction for the binary and ternary systems. The presence of cationic surfactants highly affected the sorption on NM-PAN due to the increase in distribution coefficients (Kd) of Co2+ and Cs+.

Studies on the Treatment of Nickel ion Containing Wastewater by Manganese Nodule Bed Column Adsorption (니켈 함유(含有) 폐수(廢水)의 망간단괴(團塊) 고정층(園定層) 연속(連續) 흡착(吸着) 처리(處理))

  • Baek, Mi-Hwa;Shin, Myung-Sook;Kim, Dong-Su;Jung, Sun-Hee;Park, Kyoung-Ho
    • Resources Recycling
    • /
    • v.15 no.3 s.71
    • /
    • pp.66-73
    • /
    • 2006
  • Continuous column adsorption experiments have been conducted fur artificial and actual wastewater which containing $Ni^{2+}$ by using manganese nodule as an adsorbent for the purpose of wastewater treatment along with an increased $Ni^{2+}$ recovery in the refining of manganese nodule. The adsorption features of $Ni^{2+}$ artificial wastewater were examined by taking the height of fixed bed, influent flow rate, and the initial concentration of adsorbate as the influential parameters. The adsorption capacity of manganese nodule and the rate constant for $Ni^{2+}$ adsorption were estimated employing Bohart-Adams equation. In addition, the variation of the adsorbed amount of adsorbate for each column according to the influent flow rate and the initial concentration of adsorbate was investigated based on the breakthrough curves fur each column. For serially connected columns, the adsorbed amount of $Ni^{2+}$ for each column was observed to increase gradually as the adsorption proceeded from the initial column to the final column. The variation of the breakthrough curve for actual wastewater with the height of fixed bed was not so significant as that for artificial wastewater, which was considered to be due to the high concentration of $Ni^{2+}$ in actual wastewater. Regarding the effect of the particle size of manganese nodule on adsorption, the adsorbed amount of adsorbate was found to somewhat increase as the particle size became smaller.

Synthesis, Crystal Structure and Theoretical Calculation of a Novel Nickel(II) Complex with Dibromotyrosine and 1,10-Phenanthroline

  • Huang, Guimei;Zhang, Xia;Fan, Yuhua;Bi, Caifeng;Yan, Xingchen;Zhang, Zhongyu;Zhang, Nan
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.10
    • /
    • pp.2889-2894
    • /
    • 2013
  • A new complex [$Ni(phen)(C_9H_8Br_2NO_3)_2{\cdot}2CH_3OH{\cdot}2H_2O$] [phen: 1,10-phenanthroline $C_9H_8Br_2NO_3$: 3,5-dibromo-L-tyrosine] was synthesized and characterized by IR, elemental analysis and single crystal X-ray diffraction. X-ray crystallography shows that Ni(II) ion is six-coordinated. The Ni(II) ion coordinates with four nitrogen atoms and two oxygen atoms from three ligands, forming a mononuclear Ni(II) complex. The crystal crystallizes in the Orthorhombic system, space group $P2_12_12$ with a = 12.9546 ${\AA}$, b = 14.9822 ${\AA}$, c = 9.9705 ${\AA}$, V = 1935.2 ${\AA}$, Z = 1, F(000) = 1008, S = 0.969, ${\rho}_{calcd}=1.742g{\cdot}cm^{-3}$, ${\mu}=4.688mm^{-1}$, $R_1$ = 0.0529 and $wR_2$ = 0.0738 for 3424 observed reflections (I > $2{\sigma}(I)$). Theoretical study of the title complex was carried out by density functional theory (DFT) method and the B3LYP method employing the $6-3l+G^*$ basis set. The energy gap between HOMO and LUMO indicates that this complex is prone to interact with DNA. CCDC: 908041.

Evaluation of cytotoxicity of electroplated stainless steel orthodontic wire (전기도금한 교정용 스테인레스스틸 선재의 세포독성에 관한 연구)

  • Lee, Gye-Hyeong;Cho, Jin-Hyoung;Lee, Ki-Heon;Hwang, Hyeon-Shik
    • The korean journal of orthodontics
    • /
    • v.35 no.2 s.109
    • /
    • pp.127-136
    • /
    • 2005
  • The purpose of this study was to examine the cytotoxicity of orthodontic wire which had an increased diameter through electroplating, and to evaluate its possible clinical applications, First. nickel plating was carried out on the commercially available stainless steel wire using an electroplating technique For the comparison of the electroplated wire with ready made stainless steel wire and titanium or copper. each wire was incubated for 72 hours in a medium. The release of the metal ion was measured using ICP-AES (Inductively Coupled Plasma Atomic Emission Spectrophotometer). Balb/c 3T3 mouse fibroblast was put on a microplate and placed in an incubated medium of 75%, 50%, and 20% dilation. An MTT analysis was used to compare with the medium only. The change in absorbency value of each wire group and the difference of absorbency value according to the change of dilution was measured The results of ICP-AES analysis showed that great amount nickel iou was isolated from electroplated orthodontic wires and great amount copper ion was isolated from copper. The results of the MTT analysis showed that there was no difference in the absorbency value of titanium at any dilution. However, the electroplated wires (p<0.001) the stainless steel wires (p<0.05) and the copper (P<0.001) were statistically significantly lower than those of medium only at all dilutions. Assessment as per ISO 10993, part 5, showed that electroplated wire was alloted to 'moderate cytotoxic' the titanium and stainless steel wire were 'non-cytotoxic' The results of this study indicate that the electroplated orthodontic wires need additional efforts to decrease cytotoxicity for their clinical applications.

Recoverty of Lithium Carbonate and Nickel from Cathode Active Material LNO(Li2NiO2) of Precursor Process Byproducts (전구체 공정부산물 LNO(Li2NiO2)계 양극활물질로부터 탄산리튬 및 니켈 회수연구)

  • Pyo, Je-Jung;Wang, Jei-Pil
    • Resources Recycling
    • /
    • v.28 no.4
    • /
    • pp.30-36
    • /
    • 2019
  • In this study, Li powder was recovered from the by-product of LNO ($Li_2NiO_2$) process, which is the positive electrode active material of waste lithium ion battery, through the $CO_2$ thermal reaction process. In the process of recovering Li powder, the $CO_2$ injection amount is 300 cc/min. The $Li_2NiO_2$ award was phase-separated into the $Li_2CO_3$ phase and the NiO phase by holding at $600^{\circ}C$ for 1 min. After this, the collected sample:distilled water = 1:50 weight ratio, and after leaching, the solution was subjected to vacuum filtration to recover $Li_2CO_3$ from the solution, and the NiO powder was recovered. In order to increase the purity of Ni, it was maintained in $H_2$ atmosphere for 3 hours to reduce NiO to Ni. Through the above-mentioned steps, the purity of Li was 2290 ppm and the recovery was 92.74% from the solution, and Ni was finally produced 90.1% purity, 92.6% recovery.

Effects of Alloying Elements on Corrosion Resistance of Low Alloyed Steels in a Seawater Ballast Tank Environment (Seawater ballast tank 환경에서 저합금강의 내식성에 미치는 합금원소의 영향)

  • Kim, Dong Woo;Kim, Heesan
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.6
    • /
    • pp.523-532
    • /
    • 2010
  • Co-application of organic coating and cathodic protection has not provided enough durability to low-alloyed steels inseawater ballast tank (SBT) environments. An attempt has made to study the effect of alloy elements (Al, Cr, Cu, Mo, Ni, Si, W) on general and localized corrosion resistance of steels as basic research to develop new low-allowed steels resistive to corrosion in SBT environments. For this study, we measured the corrosion rate by the weigh loss method after periodic immersion in synthetic seawater at $60^{\circ}C$, evaluated the localized corrosion resistance by an immersion test in concentrated chloride solution with the critical pH depending on the alloy element (Fe, Cr, Al, Ni), determined the permeability of chloride ion across the rust layer by measuring the membrane potential, and finally, we analyzed the rust layer by EPMA mapping and compared the result with the E-pH diagram calculated in the study. The immersion test of up to 55 days in the synthetic seawater showed that chromium, aluminium, and nickel are beneficial but the other elements are detrimental to corrosion resistance. Among the beneficial elements, chromium and aluminium effectively decreased the corrosion rate of the steels during the initial immersion, while nickel effectively decreased the corrosion rate in a longer than 30-day immersion. The low corrosion rate of Cr- or Al-alloyed steel in the initial period was due to the formation of $Cr_2FeO_4$ or $Al_2FeO_4$, respectively -the predicted oxide in the E-pH diagram- which is known as a more protective oxide than $Fe_3O_4$. The increased corrosion rate of Cr-alloyed steels with alonger than 30-day exposure was due to low localized corrosion resistance, which is explained bythe effect of the alloying element on a critical pH. In the meantime, the low corrosion rate of Ni-alloyed steel with a longer than 30-day exposure wasdue to an Ni enriched layer containing $Fe_2NiO_4$, the predicted oxide in the E-pH diagram. Finally, the measurement of the membrane potential depending on the alloying element showed that a lower permeability of chloride ion does not always result in higher corrosion resistance in seawater.

Separation and Determination of Co(II) and Ni(II) Ion as their 4-(2-Pyridylazo) resorcinol Chelates by Reversed-Phase Capillary High-Performance Liquid Chromatography (역상 모세관-고성능 액체 크로마토그래피에 의한 코발트와 니켈 이온의 4-(2-피리딜아조)레조루신올 킬레이트로서의 분리 및 정량)

  • Chung, Yong-Soon;Chung, Won-Seog
    • Journal of the Korean Chemical Society
    • /
    • v.47 no.6
    • /
    • pp.547-552
    • /
    • 2003
  • Separation and determinations of Co(II) and Ni(II) ions as their 4-(2-pyridylazo)resorcinol(PAR) chelates by reversed-phase capillary high-performance liquid chromatography(RP-CpHPLC) were performed. Among many capillary columns, Vydac C4 column was selected and acetonitrile solution was used as mobile phase. The effect of pH and MeCN concentration(%) on the retention factor, k and peak intensity was examined and discussed. As a results, it was found that 22.5% MeCN and pH 5.60 was adequate as mobile phase for the separation of the two metal ions and determination of Co(II) ion, but the mobile phase condition for Ni(II) ion determination was 22.5% MeCN of pH 7.20. Detection limit(D.L., S/N=3) of Co(II) and Ni(II) ions were $2.0{\times}10{-7}$ M(14.9 ppb) and $1.0{\times}10{-6}$ M(59.2 ppb), respectively.

Separation of Ni and Fe from $H_2SO_4$ leaching solution of scrapped Fe-Ni alloy (Fe-Ni 합금(合金) 스크랩의 황산(黃酸) 침출액(浸出液)으로부터 Ni와 Fe의 분리(分離))

  • Yoo, Kyoung-Keun;Jha, Manis Kumar;Kim, Min-Seuk;Yoo, Jae-Min;Jeong, Jin-Ki;Lee, Jae-Chun
    • Resources Recycling
    • /
    • v.17 no.1
    • /
    • pp.80-87
    • /
    • 2008
  • Cementation and solvent extraction processes were studied to separate nickel and iron ions from the $H_2SO_4$ leaching solution with 47 g/L $Fe(Fe^{2+}/Fe^{3+}=1.03),$, 23.5 g/L Ni and 0.90M $H_2SO_4$ which leached from Fe-Ni alloy. Iron powder was used as a reducing agent for the cementation of Ni ion from the leaching solution. The reduction percentage of Ni ion was $17{\sim}20%$ by adding 4 times stoichiometric amount of iron powder at $60{\sim}80$. This may result from the fact that the cementation of Ni ion occurred after the reduction of $Fe^{3+}$ to $Fe^{2+}$ and the neutralization of $H_2SO_4$ with iron powder. The cementation process was proved to be unfeasible for the separation/recovery of Ni ion from the leaching solution including $Fe^{3+}$ as a major component. $Fe^{2+}$ present in the leaching solution was converted to $Fe^{3+}$ for solvent extraction of Fe ion using D2EHPA in kerosene as a extractant. The oxidation of $Fe^{2+}$ to $Fe^{3+}$ was completed by the addition of 1.2 times stoichiometric amount of 35% $H_2SO_4$. 99.6% $Fe^{3+}$ was extracted from the leaching solution (23.5 g/L $Fe^{3+}$) by 4 stages cross-current extraction using 20 vol.% D2EHPA in kerosene. $NiSO_4$ solution with 98.5% purity was recovered from the $H_2SO_4$ leaching solution of scrapped Fe-Ni alloy.

Effect of $Ca^{++}$ Ionophore and $Ca^{++}$-Channel Blocker on the Mouse Oocyte Maturation (생쥐 난자성숙에 미치는 $Ca^{++}$ Ionophore와 $Ca^{++}$ Channel Blocker의 영향)

  • Bae, In-Ha;Kim, Hyun-Sook;Kim, Moon-Kyoo
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.19 no.2
    • /
    • pp.105-116
    • /
    • 1992
  • The present study was examined to clarify the role of calcium ion as a factor for the maturation of mouse oocytes. Follicles and cumulus-enclosed oocytes were isolated with two sharp needles under a stereomicroscope from female mouse (ICR) ovaries which were treated PMSG 5 IU 45-46 hours previously. Isolated follicles and cumulus-enclosed oocytes were cultured for 14-16 hours in an organ culture system at $37^{\circ}C$, 5% $CO_2$ in air and 100% humudified in incubator. MHBS was the basic medium used from which A23187, verapamil, $NiCl_{2.}$ $6H_2O$ and $LaCl_{3.}$ $7H_2O$ were added depending on the experimental groups. In follicle- or cumulus-enclosed oocytes wre cultured in these differently treated media. Following results were obtained from the present study. 1. The calcium ionophore A23187 directly or indirectly seems to stimulate GVBD of follicle-enclosed mouse oocytes. Increasing concentration of ionophore A23187 1ed to an increase in oocytes degeneration from the cumulus-enclosed mouse oocytes. 2. The organic $Ca^{++}$ channel blocker, verapamil does not induce GVBD of follicle-enclosed mouse oocytes. Specially, higher dose of 1 mM verapamil induced GVBD of follicle-enclosed mouse oocytes. However, cytoplasm of GVBD oocytes in 1 mM verapamil treated groups appeared shrunk. In the cumulus-enclosed oocytes, polar body formation was reduced in verapamil treated groups and degeneration increased. Verapamil inhibit oocyte maturation (polar body formation). 3. The $Ca^{++}$ inhibitor, Nickel ($NiCl_{2.}$ $6H_2O$) inhibits maturation of the follicle-enclosed oocytes. In the cumulus-enclosed oocytes the progression to MII (PB formation) was reduced and degeneration of mouse oocytes increased as the concentration of $Ni^{++}$ increase. The results indicates that nickel act as an inhibitor of calcium. 4. The $Ca^{++}$ inhibitors, Lanthanum ($LaCl_{3.}$ $7H_2O$) has shown different effect from that of nickel. In follicle-enclosed oocytes, 0.01mM lanthanum induced maturation of mouse oocytes. Polar body formation was reduced in the cumulus-enclosed oocytes all lanthanum treated group.

  • PDF