• Title/Summary/Keyword: Nickel(II) complexes

Search Result 71, Processing Time 0.019 seconds

Synthesis of Cobalt(II), Nickel(II) and Copper(II) Complexes with Tetradentate Schiff Base Ligand of o-BSDT $H_2$ and Electrochemical properties in DMSO (네자리 Schiff Base 리간드의 Cobalt(II), Nickel(II) 및 Copper(II) 착물의 합성과 DMSO용액에서 전기화학적 성질)

  • Ki-Hyung Chjo;Jong-Soon Kim
    • Journal of the Korean Chemical Society
    • /
    • v.31 no.6
    • /
    • pp.509-519
    • /
    • 1987
  • The tetradentate Schiff base ligand, 3,4-bis(salicylidene diimine) toluene, have been prepared by the reaction of salicylaldehyde with 3,4-diaminotoluene by Duff method. The Schiff base ligand reacts with Ni(II), Co(II), and Cu(II) ions to form new complexes, [Ni(o-BSDT)${\cdot}(H_2O)_2$], [Co(o-BSDT)${\cdot}(H_2O)$], and [Cu(o-BSDT)]. It seems that Ni(II) and Ni(II) complexes are hexacoordinated with the Schiff base ligand and two molecules of water, while the Cu(II) complexes are tetracoordinated with the Schiff base. The mole ratio of tetradentate Schiff base ligand to metals was found to be 1 : 1. The redox chemistry of these complexes was investigated by polarography and cyclic voltammetry with glassy carbon electrode in DMSO with 0.1M TEAP${\cdot}$[Ni(o-BSDT)${\cdot}(H_2O)_2$] hav EC reaction mechanisms which undergo a irreversible electron transfer followed by a fast chemical reaction. [Co(o-BSDT)${\cdot}(H_2O)_2$] undergoes a reduction of Co(II) to Co(I) and a oxidation of Co(II) to Co(III), and [Cu(o-BSDT)] undergoes a reduction of Cu(II) to Cu(I).

  • PDF

$^1H$ NMR Study of Imidazole, L-Histidine, and Their Derivatives Coordinated to the Paramagnetic Undecatungstocobalto(II)silicate and -nickelo(II)silicate Anions

  • Moonhee Ko;Gyung Ihm Rhyu;Hyunsoo So
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.8
    • /
    • pp.673-679
    • /
    • 1994
  • $^1H$ NMR spectra of imidazole, 2-and 4(5)-methylimidazole, histamine, L-histidine, L-histidine methyl ester, N${\alpha}$-acetyl-L-histidine, and L-carnosine coordinated to the paramagnetic undecatungstocobalto(II)silicate ($SiW_{11}Co$) and undecatungstonickelo(II)silicate ($SiW_{11}Ni$) anions are reported. For these complexes the ligand exchange is slow on the NMR time scale and the pure resonance lines of the free ligand and the complexes have been observed separately at room temperature. Two different complexes are formed, depending upon which nitrogen atom of the imidazole ring is coordinated to the cobalt or nickel ion of $SiW_{11}M$. Thus the NMR spectrum of a $D_2O$ solution containing a ligand and $SiW_{11}M$ consists of three sets of lines originating from the free ligand and two complexes. All NMR lines of the $SiW_{11}Co$ complexes have been assigned unequivocally using the saturation transfer technique. The temperature dependence of some spectra are also reported. The NMR spectra of some complexes show that the internal rotation of the substituent on the imidazole ring is hampered by the heteropolyanion moiety even at room temperature.

Isotropic NMR Shifts in Some Pyridine-Type Ligands Complexed with Paramagnetic Undecatungstocobalto(Ⅱ)silicate and Undecatungstonickelo(Ⅱ) silicate Anions. Identifications of Dumbbell-Shaped 4,$4^{\prime}$-Bipyridyl Complexes

  • Moonhee Ko;Gyung Ihm Rhyu;Hyunsoo So
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.4
    • /
    • pp.500-506
    • /
    • 1993
  • $^1H$ and $^{13}C$ NMR spectra for pyridine, ${\beta}$-and ${\gamma}$-picoline, pyrazine, and 4,4'-bipyridyl complexed with paramagnetic undecatungstocobalto(II)silicate and undecatungstonickelo(II)silicate anions are reported. For these complexes the ligand exchange is slow on the NMR time scale and the pure resonance lines have been observed at room temperature. The isotropic shifts in nickel complexes can be interpreted in terms of contact shifts by ${\sigma}$-electron delocalization. Both contact and pseudocontact shifts contribute to the isotropic shifts in cobalt complexes. The contact shifts, which are obtained by subtracting the pseudocontact shifts from the isotropic shifts, require both ${\sigma}$-and ${\pi}$-electron delocalization from the cobalt ion. Slow ligand exchange has also allowed us to identify the species formed when bidentate ligands react with the heteropolyanions. Pyrazine forms a 1 : 1 complex, while 4,4'-bipyridyl forms both 1 : 1 and dumbbell-shaped 1 : 2 complexes.

Delicate Difference in Coordinating Nature between Copper(II) and Nickel(II) Ions. Structural Properties of Copper(II) and Nickel(II) Nitrate Containing 1,2-Bis(dimethyl-3-pyridylsilyl)ethane

  • Kim, Shin-A;Kim, Chi-Won;Noh, Tae-Hwan;Lee, Young-A;Jung, Ok-Sang
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.8
    • /
    • pp.2158-2162
    • /
    • 2010
  • Studies on the molecular construction and structures of $M(NO_3)_2$ (M = Cu(II), Ni(II)) complexes with 1,2-bis(dimethyl-3-pyridylsilyl)ethane (L) have been carried out. Formation of each molecular skeleton appears to be primarily associated with a suitable combination of bidentate N-donors of L and coordinating nature of octahedral metal(II) ions: [$Cu(NO_3)_2(L)_2$] yields a 2-dimensional sheet structure consisting of 44-membered $Cu_4L_4$ skeleton whereas $[Ni(L)_2(H_2O)_2](NO_3)_2$ produces an interpenetrated 3-dimensional structure consisting of 66-membered cyclohexanoid ($M_6L_6$) skeleton. The Cu(II) ion prefers nitrate whereas the Ni(II) ion prefers water molecules as the fifth and the sixth ligands.

Complexation of Polyelectroyte-Metal(II) Ion. III. The Complex Formation of Iron(II), Cobalt(II), Nickel(II) and Copper(II) with Branched Poly(ethylene imine) (BPEI) in Aqueous Solution (Polyelectrolyte-Metal(II) 이온의 착물화 (제 3 보). Iron(II), Cobalt(II) Nickel(II) 및 Copper(II)와 Branched Poly(ethylene imine) (BPEI)간의 착물생성)

  • Dong Soo Kim;Tae Sub Cho
    • Journal of the Korean Chemical Society
    • /
    • v.30 no.5
    • /
    • pp.456-464
    • /
    • 1986
  • The complex formation of branched poly(ethylene imine) (BPEI) with bivalent transition metal ions, such as Fe(II), Co(II), Ni(II) and Cu(II), have been investigated in terms of visible absorption and pH titration methods in an aqueous solution in 0.1M KCl at 30${\circ}$. The stability constants for M(II)-BPEI complexes was calculated with the modified Bjerrum method. The formation curves of M(II)-BPEI complexes showed that Fe(II), Co(II), Ni(II) and Cu(II) ions formed coordination compounds with four, two, two, and two ethylene imine group, respectively. In the case of Cu(II)-BPEI complex at pH 3.4 ∼ 3.8, ${\lambda}_{max}$ was shifted to the red region with a decrease in the acidity. The overall stability constants (log $K_2$) increased as the following order, Co(II) < Cu(II) < Ni(II) < Fe(II).

  • PDF

Synthesis, Spectroscopic, and Biological Studies of Chromium(III), Manganese(II), Iron(III), Cobalt(II), Nickel(II), Copper(II), Ruthenium(III), and Zirconyl(II) Complexes of N1,N2-Bis(3-((3-hydroxynaphthalen-2-yl)methylene-amino)propyl)phthalamide (N1,N2-bis(3-((3-hydroxynaphthalen-2-yl)methylene-amino)propyl)phthalamide의 크롬(III), 망간(II), 철(III), 코발트(II), 니켈(II), 구리(II), 루테늄(III) 및 산화 지르코늄(II) 착물에 대한 합성과 분광학 및 생물학적 연구)

  • Al-Hakimi, Ahmed N.;Shakdofa, Mohamad M.E.;El-Seidy, Ahemd M.A.;El-Tabl, Abdou S.
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.3
    • /
    • pp.418-429
    • /
    • 2011
  • Novel chromium(III), manganese(II), iron(III), cobalt(II), nickel(II), copper(II), ruthenium(III), and zirconyl(II) complexes of $N^1,N^2$-bis(3-((3-hydroxynaphthalen-2-yl)methylene-amino)propyl)phthalamide ($H_4L$, 1) have been synthesized and characterized by elemental, physical, and spectral analyses. The spectral data showed that the ligand behaves as either neutral tridentate ligand as in complexes 2-5 with the general formula $[H_4LMX_2(H_2O)]{\cdot}nH_2O$ (M=Cu(II), Ni(II), Co(II), X = Cl or $NO_3$), neutral hexadentate ligand as in complexes 10-12 with the general formula $[H_4LM_2Cl_6]{\cdot}nH_2O$ (M=Fe(III), Cr(III) or Ru(III)), or dibasic hexadentate ligand as in complexes 6-9 with the general formula $[H_2LM_2Cl_2(H_2O)_4]{\cdot}nH_2O$ (M = Cu(II), Ni(II), Co(II) or Mn(II), and 13 with general formula $[H_4L(ZrO)_2Cl_2]{\cdot}8H_2O$. Molar conductance in DMF solution indicated the non-ionic nature of the complexes. The ESR spectra of solid copper(II) complexes 2, 5, and 6 showed $g_{\parallel}$ >g> $g_e$, indicating distorted octahedral structure and the presence of the unpaired electron in the $N^1,N^2$ orbital with significant covalent bond character. For the dimeric copper(II) complex $[H_2LCu_2Cl_2(H_2O)_4]{\cdot}3H_2O$ (6), the distance between the two copper centers was calculated using field zero splitting parameter for the parallel component that was estimated from the ESR spectrum. The antibacterial and antifungal activities of the compounds showed that, some of metal complexes exhibited a greater inhibitory effect than standard drug as tetracycline (bacteria) and Amphotricene B (fungi).

Crystal Growth, Spectral, Magnetic, Antibacterial and Antifungal Studies of Co(II) and Ni(II) Complexes of 4-Nitrobenzoic Acid

  • Roy, Sunalya M.;Sudarsanakumar, M.R.;Dhanya, V.S.;Suma, S.;Kurup, M.R. Prathapachandra
    • Journal of the Korean Chemical Society
    • /
    • v.58 no.3
    • /
    • pp.258-266
    • /
    • 2014
  • Single crystals of cobalt(II) and nickel(II) complexes of 4-nitrobenzoic acid have been successfully grown by gel diffusion technique. The grown crystals were characterized by elemental analysis, FT-IR and UV-Visible spectroscopy. The structure of the grown crystals was elucidated using single crystal X-ray diffraction studies. The title compounds $[Co(Pnba)_2(H_2O)_4]{\cdot}2H_2O$ 1 and $[Ni(Pnba)_2(H_2O)_4]{\cdot}2H_2O$ 2 where PnbaH=4-nitrobenzoic acid, crystallize in centrosymmetric triclinic space group P-1. Magnetic susceptibility measurements reveal that the compounds are paramagnetic in nature. The mechanical strength of the grown crystals was determined by Vicker's microhardness studies. The ligand (4-nitrobenzoic acid) and the complexes have been screened for their biological activity against various bacteria and fungi. The activity data show that the biological activity of the complexes is higher than that of the ligand.

Polymer-Metal Complexes(II). Catalytic Activity of Some Ni(II)-Polyethyleneimine Complexes (고분자-금속착물 (제2보). 몇가지 Ni(II)-Polyethyleneimine 착물의 촉매활성도)

  • Jung Hag Park;Tae Sub Cho
    • Journal of the Korean Chemical Society
    • /
    • v.25 no.6
    • /
    • pp.394-398
    • /
    • 1981
  • Two types of Ni(II)-polyethyleneimine (PEI) complexes, [Ni(PEI)]$Cl_2$ and [Ni(P-EI)$Cl_2$] were synthesized and their catalytic activities in the decomposition reaction of hydrogen peroxide were investigated. For the purpose of comparison, the corresponding monomeric complexes, $[Ni(en)_3]Cl_2$ and $[Ni(en)_2Cl_2$ were also prepared; it was observed that their activities increase in the following order; $0{\approx}[Ni(en)_3]Cl_2{\le}[Ni(en)_2Cl_2]<[Ni(PEI)]Cl_2<[Ni(PEI)Cl_2]$ On the basis of structural analysis by means of visible and infrared spectroscopy, the catalytic activiy of these Ni(II)-PEI complexes is assumed to depend on the bond strength between the ligand and the nickel ion.

  • PDF

Synthesis and Characterization of Dinuclear Ni(II) Complexes with Tetraazadiphenol Macrocycle Bearing Cyclohexanes

  • Kim, Ki-Ju;Jung, Duk-Sang;Kim, Duk-Soo;Choi, Chi-Kyu;Park, Ki-Min;Byun, Jong-Chul
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.11
    • /
    • pp.1747-1751
    • /
    • 2006
  • The dinuclear tetraazadiphenol macrocyclic nickel(II) complexes [$Ni_2$([20]-DCHDC)]$Cl_2$ (I), [$Ni_2$([20]-DCHDC)]$(ClO_4)_2{\cdot}2CH_3CN $ (II(b)) and [$Ni_2$([20]-DCHDC)$(NCS)_2$] (III) {$H_2$[20]-DCHDC = 14,29-dimethyl-3,10,18,25-tetraazapentacyclo-[25,3,1,$0^{4,9}$,$1^{12,16}$,$0^{19,24}$]ditriacontane-2,10,12,14,16(32),17,27(31), 28,30-decane-31,32-diol} have been synthesized by self-assembly and characterized by elemental analyses, conductances, FT-IR and FAB-MS spectra, and single crystal X-ray diffraction. The crystal structure of II(b) is determined. It crystallizes in the monoclinic space group P2(1)/c. The coordination geometries around Ni(II) ions in I and II(b) are identical and square planes. In complex III each Ni(II) ion is coordinated to $N_2O_2$ plane from the macrocycle and N atoms of NCS- ions occupying the axial positions, forming a square pyramidal geometry. The nonbonded Ni…Ni intermetallic separation in the complex II(b) is 2.8078(10) $\AA$. The FAB mass spectra of I, II and III display major fragments at m/z 635.1, 699.4 and 662.4 corresponding to [$Ni_2$([20]-DCHDC)(Cl + 2H)]$^+$, [$Ni_2$([20]-DCHDC)$(ClO_4\;+\;2H)]^+$ and [$Ni_2$([20]-DCHDC)(NCS) + 6H]$^+$, respectively.

Metal Complexes of Ambidentate Ligand (V). Nickel(II) Complexes of Bis(isonitrosobenzoylacetone)diimine Derivatives (Ambidentate 리간드의 금속착물 (제 5 보). Bis(isonitrosobenzoylacetone)diimine 유도체를 리간드로 하는 니켈(II)착물)

  • Jun Young-Sook;Baek Jae-Bum;Lee Man-Ho
    • Journal of the Korean Chemical Society
    • /
    • v.35 no.1
    • /
    • pp.46-50
    • /
    • 1991
  • Some nickel(II) complexes have been derived from the condensation of isonitrosobenzoylacetone and diamine(ethylenediamine and propylenediamine) in the presence of metal ion. It is suggested that an isonitroso group(=N-O) of the ligand coordinates to metal through nitrogen atom to form a five-membered ring while other =N-O coordinates to metal through oxygen atom to form a six-membered ring in Ni(IBN)$_2$-en ((IBA)$_2$-en = N,N'-propylenebis(isonitrosobenzoylacetone imino)). But both isonitroso groups of the ligand coordinate to metal through nitrogen atoms to form five-membered rings in Ni(IBA)$_2$-pn ((IBA)$_2$-pn = N,N'-propylenebis(isonitrosobenzoylacetone imino)).

  • PDF