• Title/Summary/Keyword: NiZn Ferrite

Search Result 250, Processing Time 0.023 seconds

A Study on Electromagnetic Wave Absorbing Properties of $Ni_{0.5}$$-A_{0.1}$-$Zn_{0.4}$.${Fe_2}{O_4}$Ferrite-Rubber Composite by Heat-Treatment Temperature of ferrite (전파흡수체용 $Ni_{0.5}$$-A_{0.1}$-$Zn_{0.4}$.${Fe_2}{O_4}$의 열처리 온도에 따른 Ferrite-Rubber Composite의 전파흡수특성에 관한 연구)

  • 박연준;김동일;이창우
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2000.05a
    • /
    • pp.109-114
    • /
    • 2000
  • In this paper, we studied the relation between heat-treatment temperature of ferrite and electromagnetic wave absorbing properties of ferrite-rubber composite. The heat-treatment temperatures of ferrite are 1200 and 1300 $^{\circ}C$, 2 hr. As s result, it has been shown that the optimum heat-treatment temperature of ferrite for electromagnetic wave absorber are related to the chemical composition. And, we can control electromagnetic wave absorbing properties of ferrite-rubber composite by the control of heat-treatment temperature of ferrite.

  • PDF

Studies of Magnetic Properties of Ni-Zn-Cu Ferrite with Low Loss and High Permeability (저손질, 고투자율을 갖는 Ni-Zn-Cu ferrite의 자기적 특성 연구)

  • 김용복;고재귀
    • Journal of the Korean Magnetics Society
    • /
    • v.8 no.2
    • /
    • pp.62-66
    • /
    • 1998
  • We have studied on the magnetic properties of the specimen with additives Bi$_2$O$_3$and$V_2O_5$ that sintered at 900 $^{\circ}C$ for 4 hours for sybthesizing optimal Ni-Zn-Cu ferrite. Curie temperature rises from 240 $^{\circ}C$ to 270 $^{\circ}C$ as Ni contents increase. Magentic maximum induction$(B_m)$ increases from 2650 G to 3300 G, 3500 G in the specimens with $V_2O_5$ and Bi$_2$O$_3$resectively. On the contrary coercive force $(H_c)$ lowers to 2.05 Oe~1.05 Oe. Permeability all increase in the specimen with additives. In the specimen with additive Bi$_2$O$_3$, we have obtained the low relative loss factor of $6.3{\times}10^{-5}~7.84{\times}10^{-5}$ in the range of 1MHz due to increase of resistivity in grain boundary. In the specimen with additive $V_2O_5$ in spite of increase permeability relative loss factor increase of due to decrease of Q-value.

  • PDF

Synthesis and Characterization of Rod-Shaped Ni-Zn Ferrite Particles (막대형 Ni-Zn 페라이트 입자의 합성 및 특성 평가)

  • Chun, Seung-Yeop;Hwang, Jin-Ah;Chun, Myoung-Pyo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.5
    • /
    • pp.300-306
    • /
    • 2018
  • The rod-shaped $Ni_{0.5}Zn_{0.5}Fe_2O_4$ particles were synthesized via a topotactic reaction, in which goethite (${\alpha}-FeOOH$) particles are the main constituents. The phases, microstructures and magnetic properties of these particles were studied using XRD, FE-SEM and VSM. The precursor solution consisted of $NiSO_4{\cdot}xH_2O$, $ZnSO_4{\cdot}xH_2O$, goethite and D.I. water werereacted at four different temperatures (50, 70, 90, $100^{\circ}C$) to generate four differently precipitated particles respectively. During the co-precipitation reaction, the pH of the solution was maintained at 8.0 using NaOH. The particles co-precipitated and calcined at a temperature of $700^{\circ}C$, exhibited a rod-shape similar to its original goethite, which means that the shape of Ni-Zn ferrite particles can be topotactically controlled by the goethite. The particles synthesized at 70 and $90^{\circ}C$ have a saturation magnetization of 29 and 35 emu/g respectively; representing better values than the ones synthesized at the 50 and $100^{\circ}C$, in which some second phases such as $Fe_2O_3$ were observed.

Apparent Densification Rate and Initial Permeability of NiCuZn Ferrite Depended on Relative Packing Density (NiCuZn Ferrite의 겉보기 고화속도와 초기투자율의 충진율 의존성에 관한 연구)

  • 류병환;이정민;고재천
    • Resources Recycling
    • /
    • v.7 no.4
    • /
    • pp.27-34
    • /
    • 1998
  • In this research, the processing control of NiCuZn Ferrite (NCZF) had been studied. NiCuZn Ferrite, which calcined at $700^{\circ}C$ for 3 bours, was ball milled for about 60 hours to ill김ke a size of $0.5\mu\;extrm{m}$ followed by granulation using spray dryer Apparent densincatioo rate and initial permeability of NiCuZn Ferrite with an initial packing density had been investigated as f follows. 1.The relative packing density of NCZF green body increas$\xi$d in the range of 48.6-56.8% with an increased forming pressure of 20-170 MPa. 2. The higher the relative pac퍼ng density of NCZF and the sintering temperature are, the higher the initial densification rate. The increased bulk rlcnsity of NCZF was attributed to the densification rate with decreased open pore and increased closed pore as the relative packing density, sintering temperature, and sinteriog tim$\xi$ increased. 3. The initial P permeability of NCZF with constant composition is logarithmically proportional to the bulk density of NCZF sintered at $875~925^{\circ}C$ for 0-5h, and strongly depended on the relative packing density of NCZF green body. The empirical equation is as f follows; log $\mu$i=$G1{\times}BD$+$G2{\times}RPD$+b(0);where, G1, G2; gradient, B.D: bulk density, RPD; relative packing density, b(0); intercept.

  • PDF

Magnetic Properties of NiZn-ferrite Synthesized from The Refined Waste Iron Oxide Catalyst (정제된 산화철 폐촉매로부터 합성된 NiZn-페라이트의 자기적 특성)

  • Park, Sang-Il;Lee, Hyo-Sook;Choi, Hyun-Seok;Hwang, Yeon
    • Korean Journal of Crystallography
    • /
    • v.14 no.1
    • /
    • pp.1-6
    • /
    • 2003
  • NiZn-ferrites were synthesized from the waste catalysts. which were by product of styrene monomer process and buried underground as an industrial wastes, and their magnetic properties were investigated. Nickel oxide and zinc oxide powders were mixed with finely ground waste catalysts, and spinel type ferrite was obtained by calcination at 900℃ and sintering at 1325℃ for 5 hours. The initial permeabilities were measured and reflection losses were calculated from S-parameters for the composition of Ni/sub x/Zn/sub 1-x/Fe₂O₄(x=0.36, 0.50, 0.66) and (Ni/sub 0.5/Zn/sub 0.5)/sub 1-y/Fe/sub 2+y/O₄(y=-0.02, 0, 0.02).

The Preparation of NiCuZn Ferrite Slurry Using the Water Mixed Binder System (수계 바인더를 이용한 NiCuZn Ferrite의 슬러리 제조)

  • 류병환;이정민;고재천
    • Resources Recycling
    • /
    • v.7 no.4
    • /
    • pp.35-42
    • /
    • 1998
  • Surface mount technology is the biggest theme in the area of deιIronic component. To miniatunze an electronic component, s such as ferrite chip inductor, the cer뼈lic wet process for green-sheet lamination and/or screen printing method through a s solvent medium system is widely used. The preparation and characterization of NiCuZn Ferrite (NCZF) shurry and the green s sheet using the water mixed binder system has been studied. The 21 vol% of NCZF slurry was prepared by a ball milling. The p polyacrylic vinyl copolymer (Mw; 60,000) was used as a binder. Th$\xi$ mixture of distilled water, isopropyl alcohol (IPA) and 2l butoxy ethanol was used as a dispersion medium. The water content of medium varied from about 40% to 80%. As the results. Thc disp$\xi$rston stability of the NCZF slurry was attributed to the free polymer rather than the electrostatic force of the particle. T The viscosity of the NCZF slurry was greatly depended on the ratio of water content in the medium.

  • PDF

The Effect of Packing Density on the Warpage Behavior of Ni-Zn-Cu Ferrite Sheets (Ni-Zn-Cu계 페라이트 시트에서 충진 밀도에 따른 시트 휨 현상)

  • Kim, Shi Yeon;Yeo, Dong-Hun;Shin, Hyo-Soon;Song, Woo Chang;Yoon, Ho Gyu
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.12
    • /
    • pp.781-786
    • /
    • 2015
  • It is necessary for ferrite sheets to be fabricated with high packing density for excellent electrical properties and high strength. In this study, the relationship between the warpage and the packing density of ferrite green sheet, was investigated with amount variation of organic additives. With 0.4 wt% of dispersant, the packing density was about 48% and warpage appeared 0.5~1.3 mm high. With 1.4 wt% of dispersant, the packing density increased up to 57% and warpage appeared 0.8~2.1 mm high. With high packing density, warpage appeared along the edges of specimen, while with low packing density, deformation appeared over whole specimen inhomogeneously. It is thought that inhomogeneous deformation after sintering came from the inhomogeneity in green sheet prepared with badly dispersed slurry. With good homogeneity in green sheet from well-dispersed slurry, isotropic shrinkage is thought to have occurred along the distance from center to edges of specimen during sintering.