• 제목/요약/키워드: NiO-YSZ

검색결과 133건 처리시간 0.031초

Electrochemical Properties of NiO-YSZ Thin Films on 316 Stainless Steel Bipolar Plates Under a Simulated PEMFC Environment

  • Lee, W.G.;Jang, H.
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권4호
    • /
    • pp.1177-1182
    • /
    • 2012
  • The corrosion resistance of 316L stainless steel coated with NiO-YSZ (Ni added yttria stabilized zirconia) was examined in a proton exchange membrane fuel cell (PEMFC) environment. The NiO-YSZ coating was carried out using a sol-gel dip coating method, and the corrosion resistance and interfacial contact resistance (ICR) were determined by the composition and morphology of the NiO-YSZ film. The corrosion resistance increased with increasing Ni content in the NiO-YSZ film, but rapid corrosion was observed when the YSZ film contained more than 15 wt % Ni due to surface cracks. The polarization resistance was improved by several orders of magnitude when 316L stainless steel was coated with a 15 wt % NiO-YSZ film compared to bare 316L. The ICR of the NiO-YSZ film was decreased to that of bare 316L when the YSZ film contained 25 wt % NiO, suggesting the possible application of NiO-YSZ coated stainless steel for a bipolar plate.

Glycine nitrate process에 의한 SOFC용 Ni-YSZ cermets 제조 (Synthesis of Ni-YSZ cermets for SOFC by glycine nitrate process)

  • 이태석;고정훈;김복희
    • 한국결정성장학회지
    • /
    • 제20권6호
    • /
    • pp.289-294
    • /
    • 2010
  • SOFC용 Ni-YSZ(Yttria Stabilized Zirconia) composite powders를 glycine nitrate process를 이용하여 만들었다. $ZrO(NO_3)_2{\cdot}2H_2O$, $Y(NO_3)_3{\cdot}6H_2O$, $Ni(NO_3)_2{\cdot}6H_2O$와 glycine을 출발원료로 하였으며 Ni의 부피비를 변화시켜 각기 그들의 소결 및 환원 특성을 알아보았다. Ni과 YSZ 상들이 상호 연결된 균질하게 분포된 다공성 미세구조를 관찰 할 수 있었으며 Ni의 첨가량에 따라 가공률이 민감하게 변화함을 알 수 있었다. 35 vol% 이상의 Ni를 함유한 Ni-YSZ cermet가 SOFC용 전극재료로 사용되는데 필요한 30% 이상의 공극을 갖는 조성임을 알 수 있었다.

Sample Preparation for Microstructural Characterization of Ni-Yttria-Stabilized Zirconia Anodes

  • Sim, Soo-Man
    • 한국세라믹학회지
    • /
    • 제55권4호
    • /
    • pp.376-380
    • /
    • 2018
  • Microstructural characterization of Ni-yttria-stabilized zirconia (YSZ) anodes using secondary electron images has been limited by a lack of contrast between Ni and YSZ phases. This paper reports a sample preparation method for obtaining secondary electron images that allow the detection of Ni, YSZ, and pore phases together. Ni-YSZ anode samples were obtained by reducing NiO-YSZ samples prepared by using the mixed oxide method. Colloidal silica polishing and electrolytic etching were performed on the Ni-YSZ samples. The morphological change of the sample surface after each polishing process is examined.

Self-Sustaining Combustion Process를 이용한 NiO/YSZ 초미세 복합분말 제조 (Preparation of NiO/YSZ Ultra-Fine Powder Composites Using Self-Sustaining Combustion Process)

  • 김선재;정충환;김경호;김영석;국일현
    • 한국세라믹학회지
    • /
    • 제33권4호
    • /
    • pp.411-417
    • /
    • 1996
  • Ultrafine NiO/YSZ (Yttria Stabilized Zirconia) powders were made by using a glycine nitrate process which is used as anode material for solid oxide fuel cells. The specific surface areas of synthesized NiO/YSZ powders were examined with controlling pH of a precursor solution and the content of glycine. The binding of glycine with metal nitrates occurring in the precursor solution was analyzed by using FTIR. The characteristics of synthesized powders were examined with X-ray diffraction(XRD) Brunauer Emmett Teller with N2 absorption. scanning electron microscopy (SEM). and transmission electron microscopy (TEM). Ultrafine NiO/YSZ powders of 15-18 m2/g were obtained through GNP when the content of glycine was controlled to 1 or 2 times the stoichiometric ratio in the precursor solutions. Strongly acid precursor solution increased the specific surface area of the synthesized powders. This is suggested to be the increased binding of metal nitrates and glycine under a strong acid solution of pH=0.5 that lets glycine consist of mainly the amine group of {{{{ { NH}`_{3 } ^{+ } }}. After sintering and reducing treatment of NiO/YSZ powders synthesized by GNP the Ni/YSZ pellet showed ideal microstructure where very fine Ni particles of 3-5 ${\mu}{\textrm}{m}$ were distributed uniformly and fine pore around Ni metal particles was formed. leading to anincrease of the triple phase boundary among gas Ni and YSZ.

  • PDF

고체산화물 연료전지용 Ni-YSZ 음극의 미세구조와 임피던스특성에 미치는 YSZ 입자크기 및 소결온도의 영향 (Effect of YSZ Particle Size and Sintering Temperature on the Microstructure and Impedance Property of Ni-YSZ Anode for Solid Oxide Fuel Cell)

  • 김구대;문지웅;이기태;이홍림
    • 한국세라믹학회지
    • /
    • 제38권5호
    • /
    • pp.466-473
    • /
    • 2001
  • Ni-YSZ 음극의 미세구조와 임피던스특성에 미치는 YSZ 입자크기 및 소결온도의 영향을 고찰하였다. 0.3~0.6$\mu\textrm{m}$의 미세한 NiO 분말을 사용할 경우에는 NiO 분말과 크기가 비슷한 미세한 YSZ 분말(TZ8Y, 0.3$\mu\textrm{m}$)을 첨가했을 때 NiO의 입성장을 억제하는 효과가 가장 크고 환원후 Ni의 입자크기를 미세하게 유지할 수 있는 미세구조를 형성하였다. 또한 미세한 YSZ 분말 (TZ8Y, 0.3$\mu\textrm{m}$)과 조대한 YSZ 분말(FYT13.0, 2$\mu\textrm{m}$)의 혼합비를 달리하여 후막을 제조하였을 때에 TZ8Y 분말만 첨가한 조성이 가장 낮은 분극 저항을 나타내었다. 한편 소결온도는 삼상계면의 양과 분극저항에 영향을 주었으며, 140$0^{\circ}C$에서 소결한 시편의 분극저항이 가장 낮은 값을 나타내었다.

  • PDF

Morphologies of Brazed NiO-YSZ/316 Stainless Steel Using B-Ni2 Brazing Filler Alloy in a Solid Oxide Fuel Cell System

  • Lee, Sung-Kyu;Kang, Kyoung-Hoon;Hong, Hyun-Seon;Woo, Sang-Kook
    • 한국분말재료학회지
    • /
    • 제18권5호
    • /
    • pp.430-436
    • /
    • 2011
  • Joining of NiO-YSZ to 316 stainless steel was carried out with B-Ni2 brazing alloy (3 wt% Fe, 4.5 wt% Si, 3.2 wt% B, 7 wt% Cr, Ni-balance, m.p. 971-$999^{\circ}C$) to seal the NiO-YSZ anode/316 stainless steel interconnect structure in a SOFC. In the present research, interfacial (chemical) reactions during brazing at the NiO-YSZ/316 stainless steel interconnect were enhanced by the two processing methods, a) addition of an electroless nickel plate to NiO-YSZ as a coating or b) deposition of titanium layer onto NiO-YSZ by magnetron plasma sputtering method, with process variables and procedures optimized during the pre-processing. Brazing was performed in a cold-wall vacuum furnace at $1080^{\circ}C$. Post-brazing interfacial morphologies between NiO-YSZ and 316 stainless steel were examined by SEM and EDS methods. The results indicate that B-Ni2 brazing filler alloy was fused fully during brazing and continuous interfacial layer formation depended on the method of pre-coating NiO-YSZ. The inter-diffusion of elements was promoted by titanium-deposition: the diffusion reaction thickness of the interfacial area was reduced to less than 5 ${\mu}m$ compared to 100 ${\mu}m$ for electroless nickel-deposited NiO-YSZ cermet.

NiO 전구체가 고체산화물 연료전지 Ni/YSZ 음극의 미세구조와 전기전도도에 미치는 영향 (Influences of NiO Precursors on Microstructures and Conductivities of Ni/YSZ Anodes in SOFCs)

  • 정윤지;이해원;임경란;김창삼
    • 한국세라믹학회지
    • /
    • 제43권7호
    • /
    • pp.402-407
    • /
    • 2006
  • NiO/YSZ(70 wt%NiO) composite powders were prepared by ball-milling of 8YSZ and NiO precursors, dried and then followed by calcination. The approach was to combine acidic $Ni(NO_3)_2{\cdot}6H_2O$ and basic $2NiCO_3{\cdot}3Ni(OH)_2{\cdot}4H_2O$ via acid-base reaction as a mixed NiO precursor. Their effects were studied in the aspects of DSC, microstructure, porosity, and electrical conductivity. Ni/YSZ composite of 1N9C (1 mole NiO from the nitrate and 9 moles of NiO from the carbonate) was prepared by consolidation at $1400^{\circ}C$ for 3 h, and then followed by reduction at $1000^{\circ}C$ for 3 h under flowing of 6% $H_2/N_2$. It showed a homogeneous microstructure with ${\sim}20%$ porosity and 1880 S/cm at $1000^{\circ}C$.

압출공정에 의해 제조된 Ni-YSZ 원통형 음극 지지체의 특성 (Electrical and Mechanical Characteristics of Ni-YSZ Tubular Support Fabricated by Extrusion)

  • 유지행;김영운;박건우;서두원;이시우;우상국
    • 한국세라믹학회지
    • /
    • 제43권12호
    • /
    • pp.768-774
    • /
    • 2006
  • The microstructure of Ni-YSZ cermets was controlled with fine and coarse starting powders (NiO and YSZ) to obtain a optimum strong and conductive tubular anode support for SOFCs. Three types of cermets with different microstructures, i.e., coarse Ni-fine YSZ, fine Ni-coarse YSZ, and fine Ni-fine YSZ, were fabricated to investigate their electrical and mechanical properties. The cermets from fine NiO powder showed high electrical conductivity due to the enhanced percolation of Ni particles. The cermet by foe Ni and coarse YSZ showed excellent electrical conductivity (>1000 S/cm) despite its high porosity $(\sim40%)$ but it showed poor mechanical strength due to the lack of percolation by YSZ particles and due to large pores. Thus fine NiO and YSZ powders were used to make strong and conductive Ni-YSZ support tube by extrusion. The microstructure of the anode tube was modified by the amount of polymeric additives and carbon black, a pore former. Ni-YSZ tube (porosity $\sim34%$) with the finer microstructure showed better performance both in electrical conductivity (>1000 S/cm) and fracture strength $(\sim140\;MPa)$. Either flat or circular NiO-YSZ tubes with the length from 20 to 40cm were successfully fabricated with the optimized composition of materials and polymeric additives.

초미분체 NiO/YSZ 고체산화물 복합재료의 제조특성 (Manufacture Properties of the Ultrafine NiO/YSZ Solid Oxide Composite)

  • 최창주;김창석;오무송;김태성
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 하계학술대회 논문집
    • /
    • pp.1080-1083
    • /
    • 2001
  • Ultrafine NiO/YSZ composite powders were prepared by using a glycine nitrate process for anode material of solid oxide fuel cells. The specific surface areas of synthesized NiO/YSZ composite powders were examined with controlling pH of a precursor solution and the content of glycine. The characteristics of synthesized composite powders were examined with X-ray diffractometer, a BET method with N$_2$absorption, scanning and transmission electron microscopy. The strongly acid precursor solution increased the specific surface area of the synthesized composite powders. This is suggested to be caused by the increased binding of metal ions and glycine under a strong acid solution of pH=0.5 that lets glycine consist of mainly the amine group of NH$_3$$\^$+/. After sintering and reducing treatment of NiO/YSZ composite powders synthesized by GNP, the Ni/YSZ pellet showed ideal micro-structure very fine Ni parties of 3-5${\mu}$m were distributed uniformly and fine pores around Ni metal particles were formed, thes, leading to an increase of the triple phase boundary among gas Ni and YSZ.

  • PDF

Y2O3-stabilized ZrO2, Ni, and graphene-added Mg by reactive mechanical grinding processing for hydrogen storage and comparison with Ni and Fe2O3 or MnO-added Mg

  • Song, Myoung Youp;Choi, Eunho;Kwak, Young Jun
    • Journal of Ceramic Processing Research
    • /
    • 제20권6호
    • /
    • pp.609-616
    • /
    • 2019
  • The optimum powder to ball ratio was examined, which is one of the important conditions in reactive mechanical grinding processing. Yttria (Y2O3)-stabilized zirconia (ZrO2) (YSZ), Ni, and graphene were chosen as additives to enhance the hydriding and dehydriding rates of Mg. Samples with a composition of 92.5 wt% Mg + 2.5 wt% YSZ + 2.5 wt% Ni + 2.5 wt% graphene (designated as Mg-2.5YSZ-2.5Ni-2.5graphene) were prepared by grinding in hydrogen atmosphere. Mg-2.5YSZ-2.5Ni-2.5graphene had a high effective hydrogen-storage capacity of almost 7 wt% (6.85 wt%) at 623 K in 12 bar H2 at the second cycle (n = 2). Mg-2.5YSZ-2.5Ni-2.5graphene contained Mg2Ni phase after hydriding-dehydriding cycling. Mg-2.5YSZ-2.5Ni-2.5graphene had a larger quantity of hydrogen absorbed for 60 min, Ha (60 min), than Mg-2.5Ni-2.5graphene and Mg-2.5graphene. The addition of YSZ also increased the initial dehydriding rate and the quantity of hydrogen released for 60 min, Hd (60 min), compared with those of Mg-2.5Ni-2.5graphene. Y2O3-stabilized ZrO2, Ni, and graphene-added Mg had a higher initial hydriding rate and a larger Ha (60 min) than Fe2O3, MnO, or Ni and Fe2O3-added Mg at n = 1.