• 제목/요약/키워드: NiO powder

검색결과 316건 처리시간 0.029초

A Simple Way to Prepare Nanosize NiO Powder by Mixing Acidic Ni Compound with Basic Ni Compound

  • Cheong, Deock-Soo;Yun, Dong-Hun;Park, Sang-Hwan;Kim, Chang-Sam
    • 한국세라믹학회지
    • /
    • 제46권6호
    • /
    • pp.592-595
    • /
    • 2009
  • Nanosize NiO powder was prepared by mixing acidic nickel nitrate with basic nickel carbonate. The particle size and morphology of NiO were mainly governed by the mole ratio of the nitrate to the carbonate. The effects were studied by DSC, XRD, FTIR, and SEM. Heat treatment conditions influence the particle size distribution of produced NiO powder extensively for the case of 3N7C (3 moles of the nitrate and 7 moles of the carbonate) and 4N6C, but only slightly for 1N9C and 2N8C. Uniform pseudospherical NiO particles were obtained in $50{\sim}70$ nm for 1N9C and $30{\sim}60$ nm for 2N8C by calcination at $750{^{\circ}C}$ for 2 h.

NiCuZn Ferrite 분말제조에 있어서 Ball Mill 분쇄 공정 중에 혼입되는 불순물의 함량 (Impurity Pick-Up for the Preparation of NiCuZn Ferrite Powder Using Ball Milling Process)

  • 고재천;류병환
    • 한국자기학회지
    • /
    • 제9권4호
    • /
    • pp.217-222
    • /
    • 1999
  • 공업적으로 세라믹공정에 많이 사용되고 있는 습식 볼밀링으로 NiCuZn ferrite 제조과정 중 혼입되는 불순물의 양을 조사 검토하였다. NiO, CuO, ZnO 및 Fe2O3의 화학조성을 변화시켜 25 vol%로 혼합하고 스테인레스 볼밀로 습식방법을 이용하여 18시간 분쇄한 후 건조시켜 $700^{\circ}C$ 3시간 하소하였다. 하소한 분말을 다시 상기와 같은 방법으로 65시간 스테인레스 볼밀로 최종 분쇄하여 저온소결용 NiCuZn ferrite(NCZF) 소재를 제조하였다. NCZF 연자성 소재를 만드는 동안 혼합 분쇄과정에서 혼입되는 불순물의 스테인레스 스틸의 양은 산화철 및 산화니켈의 함량에 많은 영향을 받았고, 하소 후의 분쇄과정에서 혼입되는 불순물의 양은 결정화된 정도에 따라 영향을 받았다. 전자기적 특성을 갖는 화학조성의 조절을 위하여, 출발원료의 함량에 따라 분쇄과정에서 혼입되는 스테인레스 스틸의 함량을 도출하는 형식을 유도하였다.

  • PDF

$Ni_3$Al의 기계적합금화에 미치는 $Y_2O_3$ 첨가의 영향 (The Effect of $Y_2O_3$ Addition on the Mechanical Alloying of $Ni_3$Al)

  • 이상태
    • 한국분말재료학회지
    • /
    • 제4권3호
    • /
    • pp.205-213
    • /
    • 1997
  • Mechanical alloying of $Ni_3Al$ and $Y_2O_3$ added ODS $Ni_3Al$ from elemental powders was investigated by the X-ray diffraction, differential scanning calorimeter, transmission electron microscopy and optical microscopy. The steady states of $Ni_3Al$ and ODS $Ni_3Al$ powders were reached after mechanical alloying with the condition of the ball-to-powder input ratio of 20:1 for 20 hours and 10 hours, respectively. The addition of nano-sized $Y_2O_3$ particles enhanced cold working and fracture, and subsequently accelerated MA of $Ni_3Al$ powders. DSC results of MAed $Ni_3Al$ powders showed four exothermic peaks at 14$0^{\circ}C$, 234$^{\circ}C$, 337$^{\circ}C$ and 385$^{\circ}C$. From the high temperature X-ray diffraction analysis, it was concluded that the peaks were resulted from the recovery solution of unalloyed Al in Ni, the formation of intermediate phase NiAl, and $LI_2$ ordering of MAed $Ni_3Al$ powders.

  • PDF

Effect of Passivation on the Sintering Behavior of Submicron Nickel Powder Compacts for MLCC Application

  • Jo, Gi-Young;Lee, Kwi-Jong;Kang, Suk-Joong L.
    • 한국분말재료학회지
    • /
    • 제20권6호
    • /
    • pp.405-410
    • /
    • 2013
  • During sintering of Ni-electrode multi-layer ceramic capacitors (MLCCs), the Ni electrode often becomes discontinuous because of its lower sintering temperature relative to that of $BaTiO_3$. In an attempt to retard the sintering of Ni, we introduced passivation of the Ni powder. To find the optimal passivation conditions, a thermogravimetric analysis (TGA) was conducted in air. After passivation at $250^{\circ}C$ for 11 h in air, a nickel oxide shell with a thickness of 4-5 nm was formed on nickel nanoparticles of 180 nm size. As anticipated, densification of the compacts of the passivated Ni/NiO core-shell powder was retarded: the starting temperature of densification increased from ${\sim}400^{\circ}C$ to ${\sim}600^{\circ}C$ in a $97N_2-3H_2$ (vol %) atmosphere. Grain growth was also retarded during sintering at temperatures of 750 and $1000^{\circ}C$. When the sintering atmosphere was changed from wet $99.93N_2-0.07H_2$ to wet $99.98N_2-0.02H_2$, the average grain size decreased at the same sintering temperature. The conductivity of the passivated powder sample sintered at $1150^{\circ}C$ for 8 h in wet $99.93N_2-0.07H_2$ was measured to be $3.9{\times}10^4S/cm$, which is comparable with that, $4.6{\times}10^4S/cm$, of the Ni powder compact without passivation. These results demonstrate that passivation of Ni is a viable means of retarding sintering of a Ni electrode and hence improving its continuity in the fabrication of $BaTiO_3$-based multi-layer ceramic capacitors.

Synthesis of $Li_xNi_(0.85)Co_(0.15)O_2$ by the PVA-procursor Method and the Effect of Air Flow During the Pyrolysis

  • 권호진;김근배;김수주;송미영;박선희;권혜영;박동곤
    • Bulletin of the Korean Chemical Society
    • /
    • 제20권5호
    • /
    • pp.508-516
    • /
    • 1999
  • Polycrystalline powder of LixNi0.85Co0.15O2 was synthesized by pyrolyzing a powder precursor obtained by the PVA-precursor method. Coin cells of lithium-ion rechargeable battery were assembled, whose the cathodes were fabricated from the crystalline powders of LixNi0.85Co0.15O2 synthesized by the method. The effect of synthetic variation on the property of the cell was tested by carrying out 100 consecutive cycles of charge-dis-charge on the cells. The property of the cell was largely influenced by the pyrolysis conditions applied for the synthesis of the LixNi0.85Co0.15O2. Depending on whether the pyrolysis was carried out in standing air or in the flow of dry air, the discharge capacity and cycle-reversibility of the cell varied in large extent. When the powder precursor was pyrolyzed in standing air, a minor phase of lithium carbonate was remained in the LixNi0.85Co0.15O2. The carbon containing powder precursor had to be pyrolyzed in the flow of dry air to eliminate the minor phase. In the flow of dry air, the lithium carbonate in the precursor was eliminated over 500-700。C without any prominent heat event. By controlling the flow of air over the precursor during its pyrolysis, particle size could also be altered. The effect of flowing dry air, during first step pyrolysis or during second step heat treatment, on the property of the cell was discussed.

고에너지 밀링을 통한 Ni-BaCe0.9Y0.1O3-δ 서멧 멤브레인의 미세구조 균질성 향상 (Improved Microstructural Homogeneity of Ni-BCY Cermets Membrane via High-Energy Milling)

  • 김혜진;안기용;김보영;이종흔;정용재;김혜령;이종호
    • 한국세라믹학회지
    • /
    • 제49권6호
    • /
    • pp.648-653
    • /
    • 2012
  • Hybridization of dense ceramic membranes for hydrogen separation with an electronically conductive metallic phase is normally utilized to enhance the hydrogen permeation flux and thereby to increase the production efficiency of hydrogen. In this study, we developed a nickel and proton conducting oxide ($BaCe_{0.9}Y_{0.1}O_{3-{\delta}}$: BCY) based cermet (ceramic-metal composites) membrane. Focused on the general criteria in that the hydrogen permeation properties of a cermet membrane depend on its microstructural features, such as the grain size and the homogeneity of the mix, we tried to optimize the microstructure of Ni-BCY cermets by controlling the fabrication condition. The Ni-BCY composite powder was synthesized via a solid-state reaction using $2NiCO_3{\cdot}3Ni(OH)_2{\cdot}4H_2O$, $BaCeO_3$, $CeO_2$ and $Y_2O_3$ as a starting material. To optimize the mixing scale and homogeneity of the composite powder, we employed a high-energy milling process. With this high-energy milled composite powder, we could fabricate a fine-grained dense membrane with an excellent level of mixing homogeneity. This controlled Ni-BCY cermet membrane showed higher hydrogen permeability compared to uncontrolled Ni-BCY cermets created with a conventionally ball-milled composite powder.