• Title/Summary/Keyword: Ni-based catalyst

Search Result 110, Processing Time 0.038 seconds

Hydrogen Production from Steam Reforming of n-Hexadecane over Ni-Based Hydrotalcite-Like Catalyst (니켈계 유사 하이드로탈사이트 촉매상에서 n-헥사데칸의 수증기 개질에 의한 수소 생산)

  • Lee, Seung-Hwan;Moon, Dong-Ju
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.5
    • /
    • pp.412-418
    • /
    • 2010
  • Steam reforming of n-hexadecane, a major component of diesel over Ni-based hydrotalcite-like catalyst was carried out at $900^{\circ}C$ at atmospheric pressure with space velocity of $10,000h^{-1}$ and feed molar ratio of steam/carbon=3.0. Ni-based hydrotalcite catalyst was prepared by a solid phase crystallization (spc) method and characterized by $N_2$-physisorption, CO chemisorption, TPR., XRD, and TEM techniques. It was found that spc Ni/MgAl catalyst showed higher catalytic stability and inhibition of carbon formation than Ni/$\gamma-Al_2O_3$ catalyst under the tested conditions. The results suggest that the modified spc-Ni/MgAl catalyst after optimization may be applied for the SR reaction of diesel.

Effect of the Ni Catalyst Size and Shape on the Variation of the Geometries for the As-grown Carbon Coils

  • Jang, Chang-Young;Kim, Sung-Hoon
    • Journal of the Korean institute of surface engineering
    • /
    • v.46 no.4
    • /
    • pp.175-180
    • /
    • 2013
  • Carbon nanofilaments (CNFs) could be synthesized using $C_2H_2/H_2$ as source gases and $SF_6$ as an incorporated additive gas under thermal chemical vapor deposition system. Ni powders were used as the catalyst for the formation of the CNFs. During the initial deposition stage, the initiation of the CNFs on the Ni catalyst was investigated. The geometries of the as-grown CNFs on Ni catalyst were strongly dependent on the size and/or the shape of Ni catalyst. Small size catalyst (<150 nm in diameter) gives rise to the unidirectional growth of the CNFs. On the other hand, large size catalyst (150~500 nm), the bidirectional growth of the CNFs could be observed. Particularly, the well faceted parallelogram-shaped Ni catalyst could give rise to the bidirectional growth of the CNFs having the symmetrically opposite direction. Eventually, these bidirectional growths of CNFs were understood to form the well-developed carbon microcoils (CMCs). Based on these results, the optimal shape and the size of the Ni catalyst to form the CMCs were discussed.

Study on Ni-based Bead Catalyst for Catalytic Thermal Decomposition of Light Hydrocarbons (경질 탄화수소 촉매 열분해를 위한 Ni 기반 구슬 촉매에 대한 연구)

  • JINHYEOK WOO;JUEON KIM;TAEYOUNG KIM;SOOCHOOL LEE;JAECHANG KIM
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.35 no.1
    • /
    • pp.27-33
    • /
    • 2024
  • In this study, we researched Ni-based bead catalysts for the catalytic thermal decomposition of light hydrocarbons. A Ni-based bead-type catalyst was prepared, and catalytic thermal decomposition performance of light hydrocarbons was evaluated. The 30Ni/Al2O3 catalyst exhibited the most superior performance, with the presence of both fibrous and carbon black forms on the catalyst surface. Catalytic performance was evaluated for particles sized between 150-250 and 500 ㎛, with excellent catalytic thermal decomposition properties in the 150-250 ㎛ range. After the reaction, carbon removal through collision between catalysts in the fluidized bed was observed. It was confirmed that as the particle size increases, the amount of carbon removed increases.

The Effect of Carrier in CO2 Reforming of CH4 to Syngas over Ni-based catalysts

  • Seo, Ho Joon;Kang, Ung Il;Yu, Eui Yeon
    • Clean Technology
    • /
    • v.5 no.2
    • /
    • pp.63-68
    • /
    • 1999
  • The activities of Ni(20wt%)/$La_2O_3$, Ni(20wt%)/${\gamma}-Al_2O_3$, and Ni(20wt%)/$SiO_2$ catalyst for $CO_2$ reforming of $CH_4$ were investigated in a fixed bed flow reactor under atmospheric condition. Catalyst characterization using XRD, TEM, SEM, BET analysis were also conducted. The catalytic activity of Ni(20wt%)/$La_2O_3$ catalyst has relatively superior to that of Ni(20wt%)/${\gamma}-Al_2O_3$ and Ni(20wt%)/$SiO_2$ catalyst. The good activity of Ni(20wt%)/$La_2O_3$ catalyst seems to depend on reduced $Ni^{\circ}$ phases of NiO($\rightarrow$ Ni + O), $LaNiO_3$($\rightarrow$ $Ni+La_2O_3$), Ni crystalline phases, and decoration of Ni phases by lanthanum species is also an important factor. Ni(20wt%)/${\gamma}-Al_2O_3$ and Ni(20wt%)/$SiO_2$ catalyst due to surface acidity resulted in the deposition of wisker type and encapsulate carbon on the surface of catalyst, but Ni(20wt%)/$La_2O_3$ catalyst did not show carbon on the surface of catalyst up to 8.5hr reaction.

  • PDF

A Study on Toluene Oxidation Reaction Characteristics of Ni-Based Catalyst in Induction Heating System (유도가열 시스템을 이용한 Ni계 촉매의 톨루엔 산화 반응 특성 연구)

  • Lee, Ye Hwan;Kim, Sung Chul;Kim, Sung Su
    • Applied Chemistry for Engineering
    • /
    • v.32 no.6
    • /
    • pp.627-631
    • /
    • 2021
  • Research on induction heating catalyst system was conducted to solve problems of the existing catalyst system for removing volatile organic compounds. In the present study, three types of Ni-based commercial catalysts were employed, and induction heating reaction characteristics including the catalyst volume, composition, heat treatment atmosphere, and position in the coil were investigated. The composition and volume of the catalyst affected the exothermic and toluene oxidation performance in the induction heating system. In particular, the Fe-added catalyst showed high exothermic performance compared to that of other catalysts consisting of more than 99% Ni, but had low toluene oxidation performance. In addition, the heat treatment in an air atmosphere of the Ni-based catalyst drastically reduced the performance. In the induction heating system, the optimal condition for the catalyst was to be located in the center of the coil. The catalyst showed similar activities among seven repeated experiments under the optimal condition derived from this work.

Studies on the Production of Hydrogen by the Steam Reforming of Glycerol Over NI Based Catalysts (NI계 촉매상에서 글리세롤의 수증기 개질반응(Steam Reforming)에 의한 수소제조 연구)

  • Hur, Eun;Moon, Dong-Ju
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.6
    • /
    • pp.493-499
    • /
    • 2010
  • Steam reforming (SR) of glycerol, a main by-product of manufacturing process of bio-diesel, for the production of hydrogen was investigated over the Ni-based catalysts. The Ni-based catalysts were prepared by an impregnation method, and characterized by $N_2$ physisorption, CO chemisorption, XRD and TEM techniques. It was found that the Ni/${\gamma}-Al_2O_3$ catalyst showed higher conversion and catalytic stability for the carbon formation than the other catalysts in the steam reforming of glycerol under the tested conditions. The results suggest that the steam reforming of glycerol over modified Ni/${\gamma}-Al_2O_3$ catalyst minimized carbon formation can be applied in hydrogen station for fuel-cell powered vehicles and fuel processor for stationary and portable fuel cells.

Reactivity Test of Ni-based Catalysts Prepared by Various Preparation Methods for Production of Synthetic Nature Gas (합성천연가스 생산을 위한 고효율 Ni계 촉매의 제법에 따른 촉매의 반응특성 조사)

  • Jang, Seon-Ki;Park, No-Kuk;Lee, Tae-Jin;Koh, Dong-Jun;Lim, Hyo-Jun;Byun, Chang-Dae
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.2
    • /
    • pp.249-256
    • /
    • 2011
  • In this study, the Ni-based catalysts for the production of synthetic natural gas were prepared by various preparation methods such as the co-precipitation, precipitation, impregnation and physical mixing methods. The ranges of the reaction conditions were the temperatures of 250~$350^{\circ}C$, $H_2$/CO mole ratio of 3.0, the pressures of 1 atm and the space velocity of 20000 $ml/g_{-cat{\cdot}}{\cdot}h$. It was found that the catalyst prepared by precipitation method had higher CO conversion than the catalyst prepared by co-precipitation method. While the catalyst prepared by precipitation method had the formation of NiO structure, the catalyst prepared by co-precipitation method had the formation of $NiAl_2O_4$ structure. It was confirmed that Ni-based catalyst prepared by the physical mixing method had the lowest CO conversion because it was deactivated by the production of $Ni_3C$ during the methanation. As a result, it was shown clearly that Ni-based catalysts prepared by impregnation method expressed the highest catalytic activity in CO methanation.

Development of Ni-based Catalyst for Hydrogen Production with Steam Reforming of Light Hydrocarbon (저급탄화수소 수증기 개질에 의한 수소 제조용 니켈계 촉매개발)

  • Kim, Dae-Hyun;Lee, Sang-Deuk;Lee, Byung-Gwon;Kim, Myung-Jun;Hong, Suk-In;Moon, Dong-Ju
    • New & Renewable Energy
    • /
    • v.4 no.4
    • /
    • pp.80-87
    • /
    • 2008
  • Steam reforming of LPG was investigated over spc-Ni/MgAl catalyst in a temperature range of $600{\sim}850^{\circ}C$, feed molar ratio of $H_2O/C=1.0{\sim}3.0$, space velocity of $10,000{\sim}90,000h^{-1}$ and at atmospheric pressure. spc-Ni/MgAl catalyst was prepared by a co-precipitation method, whereas Ni/MgO and $Ni/Al_2O_3$ catalysts were prepared by an incipient wetness method. The characteristics of catalysts were analyzed by N2 Physisorption, CO chemisorption, XRD, TOF-SIMS, SEM and TEM techniques. The Ni/MgO and $Ni/Al_2O_3$ catalysts were deactivated by the formation of carbon. However, the spc-Ni/MgAl catalyst showed higher conversion and $H_2$ selectivity than the other catalysts, even though carbon was formed on the surface of the catalyst during the reaction under the tested reaction conditions.

  • PDF

Tar Reforming for Biomass Gasification by Ru/$Al_2O_3$ catalyst (Ru/$Al_2O_3$ 촉매를 이용한 바이오매스 타르 개질 특성)

  • Park, Yeong-Su;Kim, Woo-Hyun;Keel, Sang-In;Yun, Jin-Han;Min, Tai-Jin;Roh, Seon-Ah
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.247-250
    • /
    • 2008
  • Biomass gasification is a promising technology for producing a fuel gas which is useful for power generation systems. In biomass gasification processes, tar formation often causes some problems such as pipeline plugging. Thus, proper tar treatment is necessary. So far, nickel (Ni)-based catalysts have been intensively studied for the catalytic tar removal. However, the deactivation of Ni-based catalysts takes place because of coke deposition and sintering of Ni metal particles. To overcome these problems, we have been using ruthenium (Ru)-based catalyst for tar removal. It is reported by Okada et al., that a Ru/$Al_2O_3$ catalyst is very effective for preventing the carbon deposition during the steam reforming of hydrocarbons. Also, this catalyst is more active than the Ni-based catalyst at a low steam to carbon ratio (S/C). Benzene was used for the tar model compound because it is the main constituent of biomass tar and also because it represents a stable aromatic structure apparent in tar formed in biomass gasification processes. The steam reforming process transforms hydrocarbons into gaseous mixtures constituted of carbon dioxide ($CO_2$), carbon monoxide (CO), methane ($CH_4$) and hydrogen ($H_2$).

  • PDF

$TiO_2$-Ni inverse Catalyst for CRM Reactions with High Resistance to Coke Formation

  • Seo, Hyun-Ook;Sim, Jong-Ki;Kim, Kwang-Dae;Kim, Young-Dok;Lim, Dong-Chan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.267-267
    • /
    • 2012
  • $TiO_2$-Ni inverse catalysts were prepared using atomic layer deposition (ALD) process and catalytic $CO_2$ reforming of methane (CRM) reaction over catalysts (either bare Ni or $TiO_2$ coated-Ni particles) were performed using a continuous flow reactor at $800^{\circ}C$. $TiO_2$-Ni inverse catalyst showed higher catalytic reactivity at initial stage of CRM reactions at $800^{\circ}C$ comparing to bare Ni catalysts. Moreover, catalytic activity of $TiO_2$/Ni catalyst was kept high during 13 hrs of the CRM reactions at $800^{\circ}C$, whereas deactivation of bare Ni surface was started within 1hr under same conditions. The results of surface analysis using SEM, XPS, and Raman showed that deposition of graphitic carbon was effectively suppressed in a presence of $TiO_2$ nanoparticles on Ni surface, thereby improving catalytic reactivity and stability of $TiO_2$/Ni catalytic systems. We suggest that utilizing decoration effect of metal catalyst with oxide nanoaprticles is of great potential to develop metal-based catalysts with high stability and reactivity.

  • PDF