• Title/Summary/Keyword: Ni-based amorphous

Search Result 68, Processing Time 0.036 seconds

Thermal Stability of Amorphous Ti-Cu-Ni-Sn Prepared by Mechanical Alloying

  • Oanha, N.T.H.;Choi, P.P.;Kim, J.S.;Kim, J.C.;Kwone, Y.S.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.953-954
    • /
    • 2006
  • Ti-Cu-Ni-Sn quaternary amorphous alloys of $Ti_{50}Cu_{32}Ni_{15}Sn_3$, $Ti_{50}Cu_{25}Ni_{20}Sn_5$, and $Ti_{50}Cu_{23}Ni_{20}Sn_7$ composition were prepared by mechanical alloying in a planetary high-energy ball-mill (AGO-2). The amorphization of all three alloys was found to set in after milling at 300rpm speed for 2h. A complete amorphization was observed for $Ti_{50}Cu_{32}Ni_{15}Sn_3$ and $Ti_{50}Cu_{25}Ni_{20}Sn_5$ after 30h and 20h of milling, respectively. Differential scanning calorimetry analyses revealed that the thermal stability increased in the order of $Ti_{50}Cu_{32}Ni_{15}Sn_3$, $Ti_{50}Cu_{25}Ni_{20}Sn_5$, and $Ti_{50}Cu_{23}Ni_{20}Sn_7$.

  • PDF

Consolidation of Bulk Metallic Glass Composites

  • Lee, Jin-Kyu;Kim, Hwi-Jun;Kim, Taek-Soo;Shin, Seung-Yong;Bae, Jung-Chan
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.848-849
    • /
    • 2006
  • Bulk metallic glass (BMG) composites combining a $Cu_{54}Ni_6Zr_{22}Ti_{18}$ matrix with brass powders or $Zr_{62}A_{l8}Ni_{13}Cu_{17}$ metallic glass powders were fabricated by spark plasma sintering. The brass powders and Zr-based metallic glass powders added for the enhancement of plasticity are well distributed homogeneously in the Cu-based metallic glass matrix after consolidation. The BMG composites show macroscopic plasticity after yielding, and the plastic strain increased to around 2% without a decrease in strength for the composite material containing 20 vol% Zr-based amorphous powders. The proper combination of strength and plasticity in the BMG composites was obtained by introducing a second phase in the metallic glass matrix.

  • PDF

High Density MRAM Device Technology Based on Magnetic Tunnel Junctions (자기터널접합을 활용한 고집적 MRAM 소자 기술)

  • Chun, Byong-Sun;Kim, Young-Keun
    • Journal of the Korean Magnetics Society
    • /
    • v.16 no.3
    • /
    • pp.186-191
    • /
    • 2006
  • Ferromagnetic amorphous $Ni_{16}Fe_{62}Si_8B_{14}$ and $Co_{70.5}Fe_{4.5}Si_{15}B_{10}$ layers have been devised and incorporated as free layers of magnetic tunnel junctions (MTJs) to improve MRAM reading and writing performance. The NiFeSiB and CoFeSiB single-layer film exhibited a lower saturation magnetization ($Ms=800emu/cm^3,\;and\;560emu/cm^3$, respectively) compared to that of a $Co_{90}Fe_{10}(Ms=1400emu/cm^3)$. Because amorphous ferromagnetic materials have lower Ms than crystalline ones, the MTJs incorporating amorphous ferromagnetic materials offer lower switching field ($H_{sw}$) values than that of the traditional CoFe-based MTJ. The double-barrier MTJ with an amorphous NiFeSiB free layer offered smooth surface resulting in low bias voltage dependence, and high $V_h\;and\;V_{bd}$ compared with the values of the traditional CoFe-based MTJ.

Ni added Si-Al Alloys with Enhanced Li+ Storage Performance for Lithium-Ion Batteries

  • Umirov, Nurzhan;Seo, Deok-Ho;Jung, Kyu-Nam;Kim, Hyang-Yeon;Kim, Sung-Soo
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.1
    • /
    • pp.82-88
    • /
    • 2019
  • Here, we report on nanocrystalline Si-Al-M (M = Fe, Cu, Ni, Zr) alloys for use as an anode for lithium-ion batteries, which were fabricated via a melt-spinning method. Based on the XRD and TEM analyses, it was found that the Si-Al-M alloys consist of nanocrystalline Si grains surrounded by an amorphous matrix phase. Among the Si-Al-M alloys with different metal composition, Ni-incorporated Si-Al-M alloy electrode retained the high discharge capacity of 2492 mAh/g and exhibited improved cyclability. The superior $Li^+$ storage performance of Si-Al-M alloy with Ni component is mainly responsible for the incorporated Ni, which induces the formation of ductile and conductive inactive matrix with crystalline Al phase, in addition to the grain size reduction of active Si phase.

Effect of Crystallization Treatment on the Magnetic Properties of Amorphous Strips Based on Co-Fe-Ni-B-Si-Cr Containing Nitrogen

  • Cho H.J.;Kwon H.T.;Ryu H.H.;Sohn K.Y.;You B.S.;Park W.W.
    • Journal of Powder Materials
    • /
    • v.13 no.4 s.57
    • /
    • pp.285-289
    • /
    • 2006
  • Co-Fe-Ni-B-Si-Cr based amorphous strips containing nitrogen were manufactured via melt spinning, and then devitrified by crystallization treatment at the various annealing temperatures of $300^{\circ}C{\sim}540^{\circ}C$ for up to 30 minutes in an inert gas $(N_2)$ atmosphere. The microstructures were examined by using XRD and TEM and the magnetic properties were measured by using VSM and B-H meter. Among the alloys, the amorphous ribbons of $Co_{72.6}Fe_{9.8}Ni_{5.5}B_{2.4}Si_{7.1}Cr_{2.6}$ containing 121 ppm of nitrogen showed relatively high saturation magnetization. The alloy ribbons crystallized at $540^{\circ}C$ showed that the grain size of $Co_{72.6}Fe_{9.8}Ni_{5.5}B_{2.4}Si_{7.1}Cr_{2.6}$ alloy containing 121 ppm of nitrogen was about f nm, which exhibited paramagnetic behavior. The formation of nano-grain structure was attributed to the finely dispersed Fe4N particles and the solid-solutionized nitrogen atoms in the matrix. Accordingly, it can be concluded that the nano-grain structure of 5nm in size could reduce the core loss within the normally applied magnetic field of 300A/m at 10kHz.

Temperature Dependence of Magnetization of Amorphous TM_70 Cr_5 Si_10 B_15 (TM=Fe, Co, Ni) Alloys

  • Kim, Kyeong-Sup;Yu, Seong-Cho;Lim, Woo-Young;Myuong, Wha-Nam
    • Journal of Magnetics
    • /
    • v.2 no.4
    • /
    • pp.135-137
    • /
    • 1997
  • We report the salient features of the magnetic properties of amorphous TM70Cr5Si10B15(TM=Fe, Co, Ni) alloys. The temperature dependence of magnetization for amorphous ribbons were measured by a SQUID and a VSM from 5 K to 700 K under an external field of 10 kOe. Except TM70Cr5Si10B15 that shows a paramagnetic behaviour, both Fe and Co based amorphous alloys show a typical ferromagnetic thermo-magnetization curves. For these two ferromagnetic alloys, the saturation magnetization in the temperature range from 5 K to about 0.4 Tc can be descrived by the Bloch relation, Ms (T)=Ms(0) [1-BT3/2-CT5/2]. The spin wave stiffness constants and the range of exchange interaction were analyzed from the magnetization behaviour. The variation of the magnetic properties are discussed and compared with the composition of the alloys.

  • PDF

Fabrication and Characterization of Cu-based Amorphous Coatings by Cold Spray Process (저온 분사를 이용한 Cu계 비정질 코팅층의 제조 및 특성 연구)

  • Jung, Dong-jin;Park, Dong-Yong;Lee, Jin Kyu;Kim, Hyung Jun;Lee, Kee-Ahn
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.5
    • /
    • pp.321-327
    • /
    • 2008
  • Cu based amorphous ($Cu_{54}Zr_{22}Ti_{18}Ni_6$) coating was produced by cold spraying as a new fabrication process. The microstructure and macroscopic properties of amorphous coating layer was investigated and compared with those of cold sprayed pure Cu coating. Amorphous powders were prepared by gas atomization and Al 6061 was used as the substrate plate. X-ray diffraction results showed that Cu based amorphous powder could be successfully deposited by cold spraying without any crystallization. The Cu based amorphous coating layer ($300{\sim}400{\mu}m$ thickness) contained 4.87% porosity. The hardness of Cu based amorphous coating represented $412.8H_v$, which was correspond to 68% of the hardness of injection casted bulk amorphous material. The wear resistance of Cu based amorphous coating was found to be three times higher than that of pure Cu coating. The 3-point bending test results showed that the adhesion strength of Cu based amorphous coating layer was higher than that pure Cu coating. It was also observed that hard Cu base amorphous particle could easily deform soft substrate by particle collisions and thus generated strong adhesion between coating and substrate. However, the amorphous coating layer unexpectedly represented lower corrosion resistance than pure Cu coating, which might be resulted from the higher content of porosity in the cold sprayed amorphous coating.

Hydrogen Embrittlement and Surface Properties of Pd-coated Zr-based Amorphous Alloys (Pd 코팅된 Zr기 비정질 합금의 수소취성 및 표면특성)

  • Seok, Song;Lee, Dock-Young;Kim, Ki-Bae
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.18 no.2
    • /
    • pp.182-188
    • /
    • 2007
  • [ $Zr_{50}-Ni_{27}-Nb_{18}-Co_5$ ] amorphous alloys ribbon was prepared by a single-roller melt-spinning technique. In order to improve the hydrogen kinetics Pd-coating were carried out on each side of the amorphous ribbon. Pd prevents oxidation of Zr and catalyses the dissociation of molecular hydrogen to atomic hydrogen. In this work, the hydrogen embrittlement and surface properties on Zr-based amorphous alloys were investigated. The Zr-based amorphous alloys were characterized by X-ray diffractometry(XRD) and differential scanning calorimetry(DSC). The morphology of surface and roughness was observed by using scanning electron microscopy(SEM) and atomic force microscopy (AFM). A lattice parameter of both Pd and Zr-based amorphous alloy was increased after hydrogen permeation at 473 K. After hydrogen permeation at 473 K, some cracks were observed on the surface of Pd, which was the cause for the hydrogen embrittlement. The crystallization temperature of Zr-based amorphous alloy was decreased due to the permeated hydrogen.

A study on the Low Resistance Aluminum-Molybdenum Alloy for stretchable metallization (스트레처블 배선용 저저항 알루미늄-몰리브데늄 합금에 대한 연구)

  • Min-Jun-Yi;Jin-Won-Bae;Su-Yeon-Park;Jae-Ik-Choi;Geon-Ho-Kim;Jong-Hyun-Seo
    • Journal of the Korean institute of surface engineering
    • /
    • v.56 no.2
    • /
    • pp.160-168
    • /
    • 2023
  • Recently, investigation on metallization is a key for a stretchable display. Amorphous metal such as Ni and Zr based amorphous metal compounds are introduced for a suitable material with superelastic property under certain stress condition. However, Ni and Zr based amorphous metals have too high resistivity for a display device's interconnectors. In addition, these metals are not suitable for display process chemicals. Therefore, we choose an aluminum based amprhous metal Al-Mo as a interconnector of stretchable display. In this paper, Amorphous Forming Composition Range (AFCR) for Al-Mo alloys are calculated by Midema's model, which is between 0.1 and 0.25 molybdenum, as confirmed by X-ray diffraction (XRD). The elongation tests revealed that amorphous Al-20Mo alloy thin films exhibit superior stretchability compared to pure Al thin films, with significantly less increase in resistivity at a 10% strain. This excellent resistance to hillock formation in the Al20Mo alloy is attributed to the recessed diffusion of aluminum atoms in the amorphous phase, rather than in the crystalline phase, as well as stress distribution and relaxation in the aluminum alloy. Furthermore, according to the AES depth profile analysis, the amorphous Al-Mo alloys are completely compatible with existing etching processes. The alloys exhibit fast etch rates, with a reasonable oxide layer thickness of 10 nm, and there is no diffusion of oxides in the matrix. This compatibility with existing etching processes is an important advantage for the industrial production of stretchable displays.