• Title/Summary/Keyword: Ni-base alloys

Search Result 94, Processing Time 0.027 seconds

Microstructure and Mechanical Properties of Ni-Cr-Mo Based Dental Cast Iron for Porcelain-Fused-to-Metal Firing (도재소부용 Ni-Cr-Mo계 치과용 합금의 미세조직 및 기계적성질)

  • Choi, D.C.
    • Journal of Korea Foundry Society
    • /
    • v.27 no.3
    • /
    • pp.120-125
    • /
    • 2007
  • The microstructure, mechanical properties and melting range of Ni-Cr-Mo based alloys were investigated to develop Be-free Ni-Cr-Mo base dental alloys for Porcelain-Fused-to-Metal Firing(PFM). All as-cast alloys showed dendritic structure. Rockwell hardness of 20Cr7Mo was increased with addition of Si and Ti. On the contrary, it was decreased with addition of Co. The duplex alloying elemental addition such as 3Co + xTi, 2Si + xCo and 2Si + xTi to 20Cr7Mo resulted in much increase of hardness. Rockwell hardness and compressive strength for 20Cr3CoSiTi or 17Cr6CoSiTi alloy that add Si-Ti had similar values compared to the commercial alloys. Melting range for 20Cr3CoSiTi and 17Cr6CoSiTi alloy that add Si-Ti showed similar or lower than commercial alloys. In conclusion, 20Cr3CoSiTi and 17Cr6CoSiTi alloys can be applied for commercial use.

Environmentally-Assisted Cracking of Austenitic Alloys in a PWR Environment (PWR 환경에서의 오스테나이트계 합금의 환경조장균열)

  • Hong, Jong-Dae;Jang, Hun;Jang, Changheui
    • CORROSION AND PROTECTION
    • /
    • v.12 no.1
    • /
    • pp.30-38
    • /
    • 2013
  • Austenitic stainless steels and Ni-base alloys are widely used as structural materials for major components and piping system in pressurized water reactors (PWRs). These austenitic alloys are known to be susceptible to environmental assisted cracking (EAC), such as environmentally-assisted fatigue (EAF) and primary water stress corrosion cracking (PWSCC) during long-term exposure to PWR primary water environment. In this paper, the current understanding on the phenomena and mechanisms of these EAC are briefly introduced using experimental results and literature review. The mechanisms for EAF and PWSCC for austenitic stainless steels and Ni-base alloys are discussed. Currently, austenitic stainless steels are known to be more susceptible to EAF, while less susceptible to PWSCC than Ni-base alloys. The possible explanations to such behaviors are proposed and discussed in view of the role of hydrogen and internal oxidation.

Evaluation on Liquid Formability of Bulk Amorphous Alloys (벌크비정질합금의 액상 성형성 평가)

  • Joo, Hye-Sook;Kang, Bok-Hyun;Kim, Ki-Young
    • Journal of Korea Foundry Society
    • /
    • v.26 no.5
    • /
    • pp.227-231
    • /
    • 2006
  • Liquid formability of bulk amorphous alloys is known to be very poor due to their high viscosity comparing with conventional metallic materials. It is important to have the fabricating technology of bulk amorphous alloys in order to make the components with complicated shape. Liquid formability includes the mold cavity filling ability and the hot tear(crack) resistance during solidification. A mold made of a commercial tool steel for the formability test was designed. Melting was performed by the arc melting furnace with melting capacity of 200 g in an argon atmosphere. Liquid formability and glass forming ability of Cu base and Ni base bulk amorphous alloys were measured and evaluated. Mold filling ability of Ni-Zr-Ti-Si-Sn alloy was better than that of Cu-Ni-Zr-Ti alloy, however the reverse is the hot tear resistance. Bulk amorphous alloy is very susceptible to crack if partial crystallization occurs during solidification. Crack resistance was thought to be closely related with the glass forming ability.

EFFECT OF GOLD ELECTRODEPOSIT OF PD-AG, NI-CR ALLOYS ON THE COLOR OF VENERRED RESIN (Pd-Ag 및 Ni-Cr 합금의 금 전착이 전장 레진의 색채에 미치는 영향)

  • Yang, Hong-So;Park, Yeong-Joon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.33 no.4
    • /
    • pp.645-661
    • /
    • 1995
  • As the mechanical property of composite resin improved, composite resin has been widely used esthetic dentistry. In the field of esthetic dentistry, the color of prosthetic material is very important. The purpose of this study was to evaluate the color difference of specimens, by the types of alloys and gold electrodeposit. Experimental groups were as follows : Group Prec : Au-Pt alloy with no gold coating and no resin veneer. Group Semi : Pd-Ag alloy with no gold coating and no resin veneer. Group BAse : Ni-Cr alloy with no gold coating and no resin veneer. Group Gsem : Pd-Ag alloy with no gold coating and no resin veneer. Group Gbas : Ni-Cr alloy with no gold coating and no resin veneer. Group PreR : Resin veneer on the Pd-Ag alloy without gold coating. Group SemR : Resin veneer on the Pd-Ag alloy without gold coating. Group GbsR : Resin veneer on the Ni-Cr alloy with gold coating Group BasR : Resin veneer on the Ni-Cr alloy without gold coating. In this study, colors of metal surfaces and veneered resins were evaluated by the CIE $L^{*}a^{*}b$ system. The results obtained were as follows : 1. different alloy types and gold coating make the $L^{*}a^{*}b$ system. 2. The ${\Delta}E^*$ab value between groups semi and Base was less than 1.5 and there was no $a^*$ and $b^*$ value difference between groups Gsem and Gbas 3. The values of $L^*$ and $a^*$ ain groups GsemR and GbasR were so similar that the ${\Delta}E^*$ab value was as small as 0.58. 4. In resin specimens with gold coated semiprecious or base alloys showed yellower and redder deviation than the resin specimens with precious alloy. 5. The ${\Delta}E^*$ab values between goups PreR-GsemR and groups PreR-GbasR were as small as 2.68 and 2.22 respectively.

  • PDF

CYTOTOXICITY OF DENIAL CAST BASE METAL ALLOYS ON HUMAN ORAL KERATINOCYTES (구강점막 상피세포에 대한 치과 주조용 비귀금속 합금의 세포독성)

  • Choi, Young-Jin;Yook, Jong-In;Chung, Moon-Kyu
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.37 no.6
    • /
    • pp.717-729
    • /
    • 1999
  • Although many studies on the cytotoxicity of the dental cast base metal alloys and their components have been carried out, the results are rather conflicting because of the different type of cells used and the various experimental procedures taken. Recently a number of scientists have claimed that it would be preferable to focus on the use of cells from relevant specific location of the human bodies. Consequently, the primary cultured oral keratinocyte derived from oral mucous along with nickel chloride and several of widely used dental cast base metal alloys(two Ni-Cr alloys and one Co-Cr alloy)in domestic were selected for this study, from which 1) The amounts of released metal ions were determined using atomic absorption spectrometry, 2) The cytotoxicity of nickel chloride and dental cast base metal alloys was evaluated via MTT assay, and finally, 3) The amounts of released metal ions and the cytotoxicity of nickel chloride were correlated with the cytotoxicity of dental cast base metal alloys And, the results were summarized as follows; 1. Nickel ion from Ni-Cr alloys and Cobalt ion from Co-Cr alloys resulted in maximum releasing rate during first 2h hours, followed by a decrease in releasing rate with time. Chromium ion were found to be minimal in all alloys. 2. In cytotoxic test. with $40{\mu}M,\;80{\mu}M$ of nickel chloride, there were observed an increase in the relative cell number compared to control samples after 24 hours. With $160{\mu}M$, there was found to be no difference in the relative cell number with control, except that 48 hour showed a increase in relative cell number. With $320{\mu}M$, the relative cell number remained constant and decreased after 48 hours, and with $640{\mu}M$, a continuing decrease in relative cell number was observed throughout test period. 3 The sensitivity of primary cultured oral epithelium to nickel was lower compared to the cells used in other studies. 4. CB-80 Soft and Regalloy showed no cytotoxicity to primary cultured oral epithelium and New crown resulted in a slight cytotoxicity. In conclusion, it was shown that the primary cultured oral keratinocytes could be applied successfully as testing cells in cytotoxicity test. Futhermore, the dental cast base metal alloys used in this study were found to be biocompatible.

  • PDF

Processing and Mechanical Properties of Ni-Cr and Ni-Cr-Al Foams by Pack-Cementation

  • Dunand, David;Choe, Hui-Man
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.11a
    • /
    • pp.19.1-19.1
    • /
    • 2009
  • Open-cell Ni-Cr and Ni-Cr-Al(with gamma/gamma prime microstructure typical of Bi-base super alloys) foams are manufactured by pack-cementation at $1000{\boxplus}$degrees C, followed by homogenization at $1200{\boxplus}C$. The resulting alloyed foams retain the low relative densities (less than 3.5 wt.%). The oxidation behavior of Ni-Cr foams turns out to be identical to that of bulk Ni-Cr alloys, after taking into account the foam's higher surface area. The room-temperature compressive behavior of the Ni-Cr and Ni-Cr-Al is compared to model predictions. Additionally, the foam creep behavior, measured between 680 and $825{\boxplus}C$ in the stress range of 0.1-0.3 MPa, compared to two analytical models, namely strut compression and strut bending as high-temperature deformation modes.

  • PDF

PFM APPLICATION FOR THE PWSCC INTEGRITY OF Ni-BASE ALLOY WELDS-DEVELOPMENT AND APPLICATION OF PINEP-PWSCC

  • Hong, Jong-Dae;Jang, Changheui;Kim, Tae Soon
    • Nuclear Engineering and Technology
    • /
    • v.44 no.8
    • /
    • pp.961-970
    • /
    • 2012
  • Often, probabilistic fracture mechanics (PFM) approaches have been adopted to quantify the failure probabilities of Ni-base alloy components, especially due to primary water stress corrosion cracking (PWSCC), in a primary piping system of pressurized water reactors. In this paper, the key features of an advanced PFM code, PINEP-PWSCC (Probabilistic INtegrity Evaluation for nuclear Piping-PWSCC) for such purpose, are described. In developing the code, we adopted most recent research results and advanced models in calculation modules such as PWSCC crack initiation and growth models, a performance-based probability of detection (POD) model for Ni-base alloy welds, and so on. To verify the code, the failure probabilities for various Alloy 182 welds locations were evaluated and compared with field experience and other PFM codes. Finally, the effects of pre-existing crack, weld repair, and POD models on failure probability were evaluated to demonstrate the applicability of PINEP-PWSCC.

Effects of Precipitates and Oxide Dispersion on the High-temperature Mechanical Properties of ODS Ni-Based Superalloys

  • Noh, GooWon;Kim, Young Do;Lee, Kee-Ahn;Kim, Hwi-Jun
    • Journal of Powder Materials
    • /
    • v.27 no.1
    • /
    • pp.8-13
    • /
    • 2020
  • In this study, we investigated the effects of precipitates and oxide dispersoids on the high-temperature mechanical properties of oxide dispersion-strengthened (ODS) Ni-based super alloys. Two ODS Ni-based super alloy rods with different chemical compositions were fabricated by high-energy milling and hot extrusion process at 1150 ℃ to investigate the effects of precipitates on high-temperature mechanical properties. Further, the MA6000N alloy is an improvement over the commercial MA6000 alloy, and the KS6000 alloy has the same chemical composition as the MA6000 alloy. The phase and microstructure of Ni-based super alloys were investigated by X-ray diffraction and scanning electron microscopy. It was found that MC carbide precipitates and oxide dispersoids in the ODS Ni-based super alloys developed in this study may effectively improve high-temperature hardness and creep resistance.

Surface roughness changes caused by the galvanic corrosion between a titanium abutment and base metal alloy (티타늄 지대주와 비귀금속 합금사이의 갈바닉 부식에 의한 표면 거칠기 변화 평가)

  • Lee, Jung-Jin;Song, Kwang-Yeob;Ahn, Seung-Keun;Park, Ju-Mi
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.49 no.1
    • /
    • pp.65-72
    • /
    • 2011
  • Purpose: The purpose of this study was to evaluate the level of electro-chemical corrosion and surface roughness change for the cases of Ti abutment connected to restoration made of base metal alloys. Materials and methods: It was hypothesized that Ni-Cr alloys in different compositions possess different corrosion resistances, and thus the specimens ($13{\times}13{\times}1.5\;mm$) in this study were fabricated with 3 different types of metal alloys, commonly used for metal ceramic restorations. The electrochemical characteristics were evaluated with potentiostat (Parstat 2273A) and the level of surface roughness change was observed with surface roughness tester. Paired t-test was used to compare mean average surface roughness (Ra) changes of each specimen group. Results: All specimens made of nickel-chromium based alloys, average surface roughness was increased significantly (P < .05). Among them, the Ni-Cr-Be alloy ($0.016{\pm}.007\;{\mu}m$) had the largest change of roughness followed by Ni-Cr ($0.012{\pm}.003\;{\mu}m$) and Ni-Cr-Ti ($0.012{\pm}.002\;{\mu}m$) alloy. There was no significant changes in surface roughness between each metal alloys after corrosion. Conclusion: In the case of galvanic couples of Ti in contact with all specimens made of nickel-chromium based alloys, average surface roughness was increased.

Cu-based Bulk Amorphous Alloys in the Cu-Zr-Ti-Ni-Pd System (Cu-Zr-Ti-Ni-Pd계 비정질 벌크합금의 형성과 성질)

  • Kim, Sung-Gyoo;Bae, Cha-Hurn
    • Journal of Korea Foundry Society
    • /
    • v.22 no.6
    • /
    • pp.304-308
    • /
    • 2002
  • The new Cu-Zr-Ti-Ni-Pd amorphous alloy system has been introduced and manufactured using melt-spinning and Cu-mold die casting methods. Amorphous formability, the supercooled liquid region before crystallization and mechanical properties of the alloys were examined. The reduced glass transition temperature(Trg = Tg/Tm) and the supercooled liquid region(${\Delta}$Tx = Tx-Tg) of $Cu_{49}Zr_{30}Ti_{10}Ni_5Pb_6$ alloy were 0.620 and 57 K respectively. $Cu_{49}Zr_{30}Ti_{10}Ni_5Pb_6$ amorphous alloy was produced in the rod shape with 2mm diameter using the Cu-mold die casting. The hardness value of the amorphous bulk alloy was 432 DPN.