• Title/Summary/Keyword: Ni-Zn 페라이트

Search Result 124, Processing Time 0.026 seconds

A Study on the Properties of EMI filter for the Ni/Zn ratio of Ni-Zn Ferrite (Ni-Zn ferrite의 Ni/Zn비 변화에 따른 EMI 비드 필터 특성 연구)

  • 이재영;김왕섭;손용배;김경용
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.18 no.6
    • /
    • pp.848-853
    • /
    • 1993
  • The properties of ferrite bead, a low-pass filter, are determined by the frequency dispersion of the complex permeability. In this study, frequency dispersion of complex permeability of the Ni-Zn ferrites with different Ni/Zn ratio were investigated. Relationship between the behavior of filter and dispersion of complex permeability of a ferrite was studied. As a result, it was concluded that the compositions for Ni/Zn ratio of $0.41{\sim}0.47$, having high initial permeability and good sensitivity, were favorable as a ferrite bead filter.

  • PDF

A Study on Hetero Junction using NiCuZn Ferrite System for SoP (NiCuZn 페라이트계를 이용한 SoP의 이종접합에 관한연구)

  • Kim, Nam-Hyeon;Kim, Gyeong-Nam
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.05a
    • /
    • pp.256-256
    • /
    • 2012
  • SoP용 재료에 응용하기 위하여 NiCuZn 페라이트계 이용한 이종접합의 관한연구를 하였다. NiCuZn 페라이트계와 유전체의 이종접합특성은 XRD, Dilatometer, LCR meter, FE-SEM, EDS 이용하여 물리 화학적 특성을 조사하였다. NiCuZn 페라이트계는 일반적인 세라믹 제조공정을 이용하여 분말을 제조하였으며, 이종접합은 모든 시편에서 잘 진행되었으며 일부 유전체의 이온들이 페라이트 쪽으로 확산이 진행되었으며 NCZF700계는 $900^{\circ}C$ 소결 시편에서 확산이 진행되지 않은 현상이 나타났다.

  • PDF

CO2 Decomposition with Waste Ferrite (폐기물 페라이트를 이용한 CO2분해)

  • 신현창;김진웅;최정철;정광덕;최승철
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.2
    • /
    • pp.146-152
    • /
    • 2003
  • The waste ferrites from magnetic core manufacturing process were used to $CO_2$gas decomposition to avoid the greenhouse effects. The waste ferrites are the mixed powder of Ni-Zn and Mn-Zn ferrites core. In the reduction of ferrites by 5% $H_2/Ar$ mixed gas, the weight loss of ferrites was about 14~16wt%. After the$CO_2$gas decomposition reaction, the weight of the reduced ferrites was increased up to 11wt%.$CO_2$gas was decomposed by oxidation of Fe and FeO in reduced compound and the phase of the waste ferrite was changed to spinel structure. A new technique capable of$CO_2$decomposition as low cost process through utilizing waste ferrite was development.

Magenetic Properties of Co, Ni and Ca Substituted Mn-Zn Ferrite (Co, Ni 및 Ca를 첨가한 Mn-Zn 페라이트의 자기적 성질)

  • 하태욱;이정식
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.1
    • /
    • pp.15-20
    • /
    • 1995
  • We have prepared 20 kinds of Mn-Zn ferrites as content of CaO(0.1 mol%), NiO(0.0~0.60 mol%) and CoO(0.0~0.8 mol%) adding by the coprecipitation method and studied the magnetic properties as content of CaO, NiO and CoO adding. Initial permeability decrease as the content of NiO and CoO adding increases, while Curie tem~ perature increase as the content of NiO and CoO adding increases. $(H_{c})$, $(B_{s})$ and $(W_{h})$ increase as content of NiO adding increases.

  • PDF

Electromagnetic Wave Absorption Properties of NiCuZn Ferrite (NiCuZn 페라이트의 전자파 흡수특성)

  • Park, Chan-Kyu;Kim, Ki-Tae;Chang, Sang-Mok;Lee, Sang-Rok
    • Applied Chemistry for Engineering
    • /
    • v.20 no.5
    • /
    • pp.500-504
    • /
    • 2009
  • NiCuZn Ferrites, known as preventing EMI/EMC, were prepared and their properties were investigated based on the chemical composition ratio, sintering temperature, and mean particle size. The NiCuZn ferrite made of $Fe_2O_3$ 49.0 mol%, NiO 9.0 mol%, CuO 8.0 mol%, ZnO 34.0 mol% could be applied at the largest range of electromagnetic wave. The optimal calcination and sintering temperature were $900^{\circ}C$ and $1080^{\circ}C$, respectively. The electromagnetic wave loss capacity of its mean particle size $1.12{\mu}m$ was superior to others examined.

The Electromagnetic Wave Absorption Characteristics of Cu-Ni-Zn Ferrite by Thermal Decomposition of Organic Acid Salt (유기산염 열분해법에 의한 Cu-Ni-Zn 페라이트의 전자파 흡수 특성)

  • 정재우;이완재
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.6
    • /
    • pp.947-951
    • /
    • 1995
  • The electromagnetic interference is prevented by the high magnetic loss of the ferrite. The absorbing property of electromagnetic wave could be improved by the ferrite that has a finer and more uniform microstructure. The thermal decomposition of organic acid salt provided the uniform composition and fine powder. The absorbing properties of electromagnetic wave were evaluated by the relative complex permeability, permittivity, and the attenuation which is calculated from the results of network analyzer. The permeability and permittivity were increased with increase of the density and with decrease of the grain size. The matching thickness could be reduced with increasing sintered temperature. The attenuation of the Cu-Ni-Zn ferrite showed over 20dB when the matching thickness and the matching frequency range were 6.75mm and from 160MHz to 640MHz, respectively.

  • PDF

Microwave Absorbing Properties of Silver-coated Ni-Zn Ferrite Spheres Prepared by Electroless Plating (무전해 도금법에 의해 제조된 은 피복 Ni-Zn Ferrite Sphere의 전파흡수특성)

  • Kim, Jong-Hyuk;Kim, Jae-Woong;Kim, Sung-Soo
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.3
    • /
    • pp.202-206
    • /
    • 2005
  • The present investigation provides an electromagnetic radiation absorptive composition which comprises silver-coated ferrite microspheres dispersed in silicon rubber matrix for the aim of thin microwave absorber in GHz frequencies. Ni-Zn ferrite spheres with $50{\mu}m$ size in average were prepared by spray-drying and sintering at $1130^{\circ}C$. Conductive silver layer was plated on ferrite spheres by electroless plating. Conductive Ni-Zn ferrite sphere with uniform silver layer were obtained in the concentration of 10 g/L $AgNO_3$ per 20 g ferrite spheres. For this powder, electrical resistance is reduced as low as $10^{-2}\~10^{-3}\;\Omega$. The most sensitive material parameters with silver plating is real and imaginary parts of complex permittivity. The conductive Ni-Zn ferrite spheres have large values of dielectric constant. Due to this high dielectric constant of microspheres, matching thickness is reduced to as low as 2 mm at the frequency of 7 GHz, which is much thinner than conventional ferrite absorbers.

Power Loss and Electro-Magnetic Characteristics of Ni-Cu-Zn Ferrites (Ni-Cu-Zn페라이트의 損失과 磁性 特性)

  • Otsuki, E.;Kim, Jeong-Su
    • Resources Recycling
    • /
    • v.13 no.6
    • /
    • pp.37-42
    • /
    • 2004
  • The power loss analysis was carried out for Ni-Cu-Zn ferrite sample with different content of NiO and ZnO. The power loss, Pcv decreases monotonically with increasing temperature and attains to a certain value at around 100~120 degrees Celsius. The frequency dependence of Pcv can be explained by Pcv~f$^n$, and n is independent of the frequency, f up to 1 MHz. The Pcv decreases with an increase in ZnO/NiO. The Pcv was separated to hysteresis loss(Ph) and residual loss(Pcv-Ph). The temperature characteristics and compositional dependence of Pcv can be attributed to the Ph, while Pcv-Ph is not affected by both temperature and ZnO/NiO. By analyzing temperature and composition dependence of Ph and initial permeability, ${\mu}_i$ like following equations could be formularized. ${\mu}_i{\mu}_0=I_s^2/(K_I+b{\sigma}_0{\lambda}_s)$ Wh=13.5(I$_s^2/{\mu}_i{\mu}_0)$ Where ${\mu}_0$ is permeability of vacuum, I$_s$ is saturation magnetization, K$_I$ is anisotropy constant, $s_0$ is internal heterogeneous stress, ${\lambda}_s$ is magnetostriction constant, b is unknown constant, and Wh is hysteresis loss per one cycle of excitation (Ph=Wh${\times}$f). Steinmetz constant of Ni-Cu-Zn ferrite, m=1.64~2.2 is smaller than that of Mn-Zn ferrites, which suggests the difference of loss mechanisms between these materials.

Power Loss and Electro-Magnetic Characteristics of Ni-Cu-Zn Ferrites (Ni-Cu-Zn페라이트의 손실과 자성 특성)

  • Otsuki E.;Kim Jeong-Su
    • Proceedings of the Korean Institute of Resources Recycling Conference
    • /
    • 2004.12a
    • /
    • pp.3-11
    • /
    • 2004
  • The power loss analysis was carried out for Ni-Cu-Zn ferrite samples with different content of NiO and ZnO. The power loss, Pcv decreases monotonically wi increasing temperature and attains to a certain value at around $100\~120$ degrees Celsius. The frequency dependence of Pcv can be explained by $Pcv\~f^n$', and n is independent of the frequency, f up to 1MHz. The Pcv decreases with an increase in ZnO/NiO. The Pcv was separated to hysteresis loss, Ph and residual loss, (Pcv-Ph). The temperature characteristics and compositional dependence of Pcv can be attributed to the Ph, while (Pcv-Ph) is not affected by both temperature and ZnO/NiO. By analyzing temperature and composition dependence of Ph and initial permeability, ${\mu}^i$ following equations could be formularized. $${\mu}_i{\mu}o=I_x\;^2/(K_1+bs_ol_s)\;\;\;\;(1)$$ $Wh=13.5(I_s\;^2/{\mu}_i{\mu}_o)\;\;\;\;(2)$$ Were ${\mu}_o$ is permeability of vacuum, $I_s$ saturation magnetization, $K_1$ anisotropy constant, $S_o$ internal heterogeneous stress, $I_s$, magnetostriction constant, b unknown constant. Wh hysteresis loss per one cycle of excitation (Ph: Wh*f). Steinmetz constant of Ni-Cu-Zn ferrites, $m=1.64\~2.2$ is smaller than the one of Mn-Zn ferrites, which suggests the difference of loss mechanism between these materials.

  • PDF

The effect of $Co_3O_4$ substitution on properties of Ni-Zn Ferrite (Ni-Zn 페라이트 물성의 $Co_3O_4$ 치환효과)

  • An, Yong-Woon;Kim, Jong-Ryung;Oh, Young-Woo;Kim, Hyun-Sik;Lee, Hae-Yon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.569-572
    • /
    • 2003
  • 전력선 통신용 LC 공진필터에 사용되는 Ni-Zn 페라이트를 제조하기 위해 Ni0.8Zn0.2Fe2O4를 기본조성으로 선택하고 x (Co mol 비)를 변화시켜 전자기적 특성을 조사하였다. $Bi_2O_3$ CaO가 첨가됨으로써 균일한 입자성장과 입계에 고저항층이 형성되어 주파수 손실이 감소하였으며, $Ni_{0.8-x}Zn_{0.2}Co_xFe_2O_{\delta}$의 기본조성에 Co의 함량을 증가시키면 x = 0.05에서 투자율 75, 공진주파수 20 MHz의 특성을 나타내고 결정 입자 크기와 같은 구조적 특성에는 영향을 거의 미치지 않지만 자기이방성 변화에 따라 전자기적 특성에는 영향을 미친다. 또한, $Ni_{0.75}Zn_{0.2}Co_{0.05}Fe_2O_{4.017}$ 조성의 페라이트 코어의 발열량은 큐리온도 이하에서 일어난다.

  • PDF