• Title/Summary/Keyword: Ni-W alloy

Search Result 177, Processing Time 0.023 seconds

A Study on the Relationship between Deformation Mode and Extrusion Properties for Zr-based Bulk Metallic Glass (Zr계 벌크 비정질 합금의 변형 모드와 압출 특성의 상관 관계에 관한 연구)

  • Lee K. S.;Chang Y. W.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.199-202
    • /
    • 2004
  • In this present study, an attempt was made to determine the deformation mode of the Zr-Ti-Cu-Ni-Be bulk metallic glass by compression test over a wide range of temperatures and strain rates. From the results, empirical deformation map could be constructed including the boundaries of different deformation modes. Considering power dissipation map and instability map developed on the basis of the Dynamic Materials Model (DMM), the processing map for extrusion could also be constructed. In addition, the macroscopic formability of this BMG alloy has also been examined through the extrusion in laboratory scale within undercooled liquid state. From the results of macroscopic extrusion formability, both deformation map and processing map present good criteria to determine optimal forming conditions.

  • PDF

Fabrication of High Aspect Ratio Micro Structure for fine pitch probe production (Fine pitch probe 제작을 위한 고세장비 마이크로 구조물 제작)

  • Lee, S.I.;Kim, W.K.;Pyo, C.R.;Kim, D.Y.;Yang, S.J.;Ko, K.H.;Kim, H.J.;Jeon, B.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.356-359
    • /
    • 2007
  • Continuing improvements in integrated circuit chip density and functionality have mostly contributed toward a very large-scale integrated circuit(VLSI) and display device. In order to test (pass or fail) all of the high integrated semiconductor chip and display device, fine pitch probes are used. Fine pitch probes are manufactured by electroforming process of a Ni alloy in an electrolytic bath. In this paper, we expect that the electric field in bath with the Finite Element Method and applying the FEM result. So, we can obtained the probes that have high aspect ratio of 10 : 1

  • PDF

Growth Conditions of $SrTiO_3 $ Film on Textured Metal Substrate for $YBa_2CU_3O_{7-\delta}$ Coated Conductor ($YBa_2CU_3O_{7-\delta}$ coated Conductor 완충층으로의 응용을 위한 $SrTiO_3 $ 박막의 성장 조건)

  • Chung, J.K.;Ko, R.K.;Song, K.J.;Park, C.;Kim, C.J.
    • Korean Journal of Crystallography
    • /
    • v.14 no.2
    • /
    • pp.51-55
    • /
    • 2003
  • SrTiO₃ (STO) thin fims were deposited on the biaxially textured Ni-3 wt%W alloy substrates to be used as a single buffer layer for YBa₂CU₃O/sub 7-8/(YBCO) coated conductor. Thin films of YBCO and STO were deposited using pulsed laser. The deposition condition for epitaxial growth of STO on the textured metal was identified, and YBCO coated conductor with a single STO buffer layer with critical current density of 1.2 MA㎠ at 77 K under zero magnetic field and critical temperature of 86 K, was fabricated.

Investigation on Size Distribution of Tungsten-based Alloy Particles with Solvent Viscosity During Ultrasonic Ball Milling Process (초음파 볼밀링 공정에 의한 용매 점도 특성에 따른 텅스텐계 합금 분쇄 거동)

  • Ryu, KeunHyuk;So, HyeongSub;Yun, JiSeok;Kim, InHo;Lee, Kun-Jae
    • Journal of Powder Materials
    • /
    • v.26 no.3
    • /
    • pp.201-207
    • /
    • 2019
  • Tungsten heavy alloys (W-Ni-Fe) play an important role in various industries because of their excellent mechanical properties, such as the excellent hardness of tungsten, low thermal expansion, corrosion resistance of nickel, and ductility of iron. In tungsten heavy alloys, tungsten nanoparticles allow the relatively low-temperature molding of high-melting-point tungsten and can improve densification. In this study, to improve the densification of tungsten heavy alloy, nanoparticles are manufactured by ultrasonic milling of metal oxide. The physical properties of the metal oxide and the solvent viscosity are selected as the main parameters. When the density is low and the Mohs hardness is high, the particle size distribution is relatively high. When the density is high and the Mohs hardness is low, the particle size distribution is relatively low. Additionally, the average particle size tends to decrease with increasing viscosity. Metal oxides prepared by ultrasonic milling in high-viscosity solvent show an average particle size of less than 300 nm based on the dynamic light scattering and scanning electron microscopy analysis. The effects of the physical properties of the metal oxide and the solvent viscosity on the pulverization are analyzed experimentally.

Two-step thermochemical cycle using metal oxide and CH4 (금속산화물과 CH4를 이용한 2단계 열화학 사이클)

  • Lee, S.H.;Park, Y.C.;Kim, J.W.;Sim, K.S.;Jung, K.D.
    • Journal of Hydrogen and New Energy
    • /
    • v.12 no.3
    • /
    • pp.219-229
    • /
    • 2001
  • Hydrogen production by a 2-step water-splitting thermochemical cycle using metal oxides (ferrites) redox pairs and $CH_4$ have been studied in this experiment. The ferrites were reacted with $CH_4$ at $700{\sim}800^{\circ}C$ to produce CO, $H_2$ and various reduced phases (reduction step); these were then reoxidized with water vapor to generate $H_2$ in water-splitting step (oxidation step) at $600{\sim}700^{\circ}C$. The reduced ferrites, Ni-FeO and Ni-Fe alloy showed respectively different reactivity for $H_2$ formation from $H_2O$. In reduction reaction at $800^{\circ}C$, carbon was deposited on surface of Ni-ferrite due to $CH_4$ decomposition. This reduced phase containing carbon, which was taken quite different feature from other phase, produced $H_2$, CO, $CO_2$ by reacting with $H_2O$ at $600^{\circ}C$. The amount of $H_2$ evolved using reduced phase containing carbon was much higher than that of other phase.

  • PDF

Study on the control technique for the heat transportation system using metal hydride (수소저장합금을 이용한 열수송시스템 제어기술 연구)

  • Sim, K.S.;Kim, J.W.;Kim, J.D.;Myung, K.S.
    • Journal of Hydrogen and New Energy
    • /
    • v.11 no.1
    • /
    • pp.43-49
    • /
    • 2000
  • The heat transportation from a complex of industry to a rural area needs more efficient method because the distance between them is usually more than 10km. Conventional heat transportation using steam or hot water via pipe line has limits in transportation distance (about 3~5 km) because of the heat loss and frictional loss in the pipe line. Metal hydride can absorb or discharge hydrogen through exothermic or endothermic reaction. After releasing hydrogen from metal hydride by means of the waste heat from industry, we can transport this hydrogen to urban area via pipe line. In urban areas, other metal alloy reacts with this hydrogen to form metal hydride and produces heat for heating. Cool heat is also obtained if it is possible to use metal hydride with low reaction temperature. Therefore, metal hydride can be used as a media for transportation and storage of heat. $MmNi_{4.5}Al_{0.5}Zr_{0.003}$, $LaNi_5$, $Zr_{0.9}Ti_{0.1}Cr_{0.6}Fe_{1.4}$, $MmNi_{4.7}Al_{0.1}Fe_{0.1}V_{0.1}$ alloys were selected for this purpose and the properties of those metal hydrides were discussed. The design and control techniques were proposed and discussed for this heat transportation system using metal hydride.

  • PDF

Optimal Aluminizing Coating on Incoloy 909 (Incoloy 909 합금의 최적 알루미나이징 확산 코팅)

  • Kwon, S.W.;Yoon, J.H.;Joo, Y.K.;Cho, T.Y.;Ahn, J.S.;Park, B.K.
    • Journal of the Korean institute of surface engineering
    • /
    • v.40 no.4
    • /
    • pp.175-179
    • /
    • 2007
  • An Fe-Ni-Co based superalloy Incoloy 909 (Incoloy 909) has been used for gas turbine engine component material. This alloy is susceptible to high temperature oxidation and corrosion because of the absence of corrosion resistant Cr. For the improvement of durability of the component of Incoloy 909 aluminizing-chromate coating by pack cementation process has been investigated at relatively low temperature of about $550^{\circ}C$ to protect the surface microstructure and properties of Incoloy 909 substrate. As a previous study to aluminizing-chromate coating by pack cementation of Incoloy 909, the optimal aluminizing process has been investigated. The size effects of source Al powder and inert filler $Al_O_3$ powder and activator selection have been studied. And the dependence of coating growth rate on aluminizing temperature and time has also been studied. The optimal aluminizing process for the coating growth rate is that the mixing ratio of source Al powder, activator $NH_4Cl$ and filler $Al_O_3$ are 80%, 1% and 19% respectively at aluminizing temperature $552^{\circ}C$ and time 20 hours.

Evaluation of the STS303-Cu vacuum-brazed by Ni-based alloy (Ni기 삽입금속에 의해 진공 브레이징된 STS303-Cu의 특성평가)

  • Chang, Se-Hun;Hong, Ji-Min;Choi, Se-Weon;Kang, Chang-Seog;Kim, Ho-Sung;Oh, Ik-Hyun
    • Korean Journal of Materials Research
    • /
    • v.17 no.6
    • /
    • pp.293-297
    • /
    • 2007
  • Microstructure and tensile strength of the vacuum brazed stainless steel(STS303) and Cu were investigated. For brazing, the BNi-2, 3, 4, 6 and 7 (A.W.S standard) were used as filler metals. The Oxides such as $Cr_2O_3$ and $SiO_2$ were observed at brazed layers between STS303 and Cu matrix. Also, the intermetallic compounds of Cr-B and Ni-P were observed at brazed layers. Brazed STS303-Cu specimens with BNi-2, 3, 4 filler metals showed almost elastic deformation followed by plastic yielding and strain hardening up to a peak stress. On the other hand, it is likely that the fracture of the brazed specimens with BNi-6 and 7 was occurred in elastic range without plastic yielding up to a peak stress. Among these filler metals, the BNi-2 brazed at $1050^{\circ}C$ showed excellent wettability and the highest tensile strength (101.6MPa).

Effects of Holding Temperatures on Microstructure and Mechanical Properties of CP Titanium and Ti-6Al-4V Alloy and Its low Temperature Brazing Characteristics (열노출 온도에 따른 CP 티타늄, Ti-6Al-4V 합금의 미세조직/기계적성질 변화 및 저온브레이징 특성)

  • Sun, J.H.;Shin, S.Y.;Hong, J.W.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.23 no.1
    • /
    • pp.3-9
    • /
    • 2010
  • Titanium and its alloys were brazed in the range of $850-950^{\circ}C$ within 10 min. of brazing time using expensive infra red or other heating methods. However, brazing time needs to be extended to get temperature-uniformity for mass production by using continuous belt type furnace or high vacuum furnace with low heating rate. This study examined effects of holding temperature for 60 min, on microstructure and mechanical properties of titanium alloys. Mechanical properties of titanium alloys were drastically deteriorated with increasing holding temperature followed by grain growth. Maximum holding temperatures for CP (commercial pure) titanium and Ti-6Al-4V were confirmed as $800^{\circ}C$ and $850^{\circ}C$, respectively. Both titanium alloys were successfully brazed at $800^{\circ}C$ for 60 min. with the level of base metal strengths by using Zr based filler metal, $Zr_{54}Ti_{22}Ni_{16}Cu_8$.

High alloyed new stainless steel shielding material for gamma and fast neutron radiation

  • Aygun, Bunyamin
    • Nuclear Engineering and Technology
    • /
    • v.52 no.3
    • /
    • pp.647-653
    • /
    • 2020
  • Stainless steel is used commonly in nuclear applications for shielding radiation, so in this study, three different types of new stainless steel samples were designed and developed. New stainless steel compound ratios were determined by using Monte Carlo Simulation program Geant 4 code. In the sample production, iron (Fe), nickel (Ni), chromium (Cr), silicium (Si), sulphur (S), carbon (C), molybdenum (Mo), manganese (Mn), wolfram (W), rhenium (Re), titanium (Ti) and vanadium (V), powder materials were used with powder metallurgy method. Total macroscopic cross sections, mean free path and transmission number were calculated for the fast neutron radiation shielding by using (Geant 4) code. In addition to neutron shielding, the gamma absorption parameters such as mass attenuation coefficients (MACs) and half value layer (HVL) were calculated using Win-XCOM software. Sulfuric acid abrasion and compressive strength tests were carried out and all samples showed good resistance to acid wear and pressure force. The neutron equivalent dose was measured using an average 4.5 MeV energy fast neutron source. Results were compared to 316LN type stainless steel, which commonly used in shielding radiation. New stainless steel samples were found to absorb neutron better than 316LN stainless steel at both low and high temperatures.