• 제목/요약/키워드: Ni-NTA chromatography

검색결과 61건 처리시간 0.026초

Expression of manB Gene from Escherichia coli in Lactococcus lactis and Characterization of Its Bifunctional Enzyme, Phosphomannomutase

  • Li, Ling;Kim, Seul Ah;Fang, Ruosi;Han, Nam Soo
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권8호
    • /
    • pp.1293-1298
    • /
    • 2018
  • Phosphomannomutase (ManB) converts mannose-6-phosphate (M-6-P) to mannose-1-phosphate (M-1-P), which is a key metabolic precursor for the production of GDP-D-mannose used for production of glycoconjugates and post-translational modification of proteins. The aim of this study was to express the manB gene from Escherichia coli in Lactococcus lactis subsp. cremoris NZ9000 and to characterize the encoded enzyme. The manB gene from E. coli K12, of 1,371 bp and encoding 457 amino acids (52 kDa), was cloned and overexpressed in L. lactis NZ9000 using the nisin-controlled expression system. The enzyme was purified by Ni-NTA column chromatography and exhibited a specific activity of 5.34 units/mg, significantly higher than that of other previously reported ManB enzymes. The pH and temperature optima were 8.0 and $50^{\circ}C$, respectively. Interestingly, the ManB used in this study had two substrate specificity for both mannose-1-phosphate and glucose-1-phosphate, and the specific activity for glucose-1-phosphate was 3.76 units/mg showing 70% relative activity to that of mannose-1-phosphate. This is the first study on heterologous expression and characterization of ManB in lactic acid bacteria. The ManB expression system constructed in this study canbe used to synthesize rare sugars or glycoconjugates.

Cloning and Characterization of Glycogen-Debranching Enzyme from Hyperthermophilic Archaeon Sulfolobus shibatae

  • Van, Trinh Thi Kim;Ryu, Soo-In;Lee, Kyung-Ju;Kim, Eun-Ju;Lee, Soo-Bok
    • Journal of Microbiology and Biotechnology
    • /
    • 제17권5호
    • /
    • pp.792-799
    • /
    • 2007
  • A gene encoding a putative glycogen-debranching enzyme in Sulfolobus shibatae(abbreviated as SSGDE) was cloned and expressed in Escherichia coli. The recombinant enzyme was purified to homogeneity by heat treatment and Ni-NTA affinity chromatography. The recombinant SSGDE was extremely thermostable, with an optimal temperature at $85^{\circ}C$. The enzyme had an optimum pH of 5.5 and was highly stable from pH 4.5 to 6.5. The substrate specificity of SSGDE suggested that it possesses characteristics of both amylo-1,6-glucosidase and $\alpha$-1,4-glucanotransferase. SSGDE clearly hydrolyzed pullulan to maltotriose, and $6-O-\alpha-maltosyl-\beta-cyclodextrin(G2-\beta-CD)$ to maltose and $\beta$-cyclodextrin. At the same time, SSGDE transferred maltooligosyl residues to the maltooligosaccharides employed, and maltosyl residues to $G2-\beta-CD$. The enzyme preferentially hydrolyzed amylopectin, followed in a decreasing order by glycogen, pullulan, and amylose. Therefore, the present results suggest that the glycogen-debranching enzyme from S. shibatae may have industrial application for the efficient debranching and modification of starch to dextrins at a high temperature.

Cloning, Expression, and Characterization of a Cold-Active and Organic Solvent-Tolerant Lipase from Aeromicrobium sp. SCSIO 25071

  • Su, Hongfei;Mai, Zhimao;Yang, Jian;Xiao, Yunzhu;Tian, Xinpeng;Zhang, Si
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권6호
    • /
    • pp.1067-1076
    • /
    • 2016
  • The gene encoding lipase (Lip98) from Aeromicrobium sp. SCSIO 25071 was cloned and functionally expressed in Escherichia coli. Lip98 amino acid sequence shares the highest (49%) identity to Rhodococcus jostii RHA1 lipase and contains a novel motif (GHSEG), which is different from other clusters in the lipase superfamily. The recombinant lipase was purified to homogeneity with Ni-NTA affinity chromatography. Lip98 showed an apparent molecular mass of 30 kDa on SDS gel. The optimal temperature and pH value for enzymatic activity were recorded at 30℃ and 7.5, respectively. Lip98 exhibited high activity at low temperatures with 35% maximum activity at 0℃ and good stability at temperatures below 35℃. Its calculated activation energy was 4.12 kcal/mol at the low temperature range of 15-30℃. Its activity was slightly affected by some metal ions such as K+, Ca2+, and Na+. The activity of Lip98 was increased by various organic solvents such as DMSO, ethanol, acetone, and hexane with the concentration of 30% (v/v) and retained more than 30% residual activity in neat organic solvent. The unique characteristics of Lip98 imply that it is a promising candidate for industrial application as a nonaqueous biocatalyst and food additive.

Enzymatic Properties of a Thermostable ${\alpha}$-Glucosidase from Acidothermophilic Crenarchaeon Sulfolobus tokodaii Strain 7

  • Park, Jung-Eun;Park, So Hae;Woo, Jung Yoon;Hwang, Hye Sun;Cha, Jaeho;Lee, Heeseob
    • Journal of Microbiology and Biotechnology
    • /
    • 제23권1호
    • /
    • pp.56-63
    • /
    • 2013
  • We have characterized the putative ${\alpha}$-glucosidase gene (st2525) selected by total genome analysis from the acidothermophilic crenarchaeon Sulfolobus tokodaii strain 7. The ORF was cloned and expressed as a fusion protein in Escherichia coli, and recombinant ST2525 was purified by Ni-NTA affinity chromatography. Maximum activity was observed at $95^{\circ}C$ and pH 4.0, and the enzyme exhibited stability with half-lives of 40.1 min and 7.75 min at extremely high temperatures of $100^{\circ}C$ and $105^{\circ}C$, respectively. The enzyme retained at least 85% of its maximal activity in the pH range of 4.0-11.0. ST2525 exclusively hydrolyzed ${\alpha}$-1,4-glycosidic linkages of oligosaccharides in an exo-type manner, with highest catalytic efficiency toward maltotriose. The enzyme also displayed transglycosylation activity, converting maltose to isomaltose, panose, maltotriose, isomaltotriose, etc. From these results, ST2525 could be potentially useful for starch hydrolysis as well as novel synthesis of oligosaccharides in industry.

ELISA detection of vivax malaria with recombinant multiple stage-specific antigens and its application to survey of residents in endemic areas

  • Kim, Sera;Ahn, Hye-Jin;Kim, Tong-Soo;Nam, Ho-Woo
    • Parasites, Hosts and Diseases
    • /
    • 제41권4호
    • /
    • pp.203-207
    • /
    • 2003
  • An ELISA was developed for the diagnosis of vivax malaria using multiple stage-specific recombinant antigens of Plasmodium vivax. The DNA from the whole blood of a malaria patient was used as template to amplify the coding regions for the antigenic domains of circumsporozoite protein (CSP-1), merozoite surface protein (MSP-1), apical merozoite antigen (AMA-1), serine repeat antigen (SERA), and exported antigen (EXP-1). Each amplified DNA fragment was inserted into pQE30 plasmid to induce the expression of His-tagged protein in Escherichia coli (M15 strain) by IPTG. His-tagged proteins were purified by Ni-NTA metal-affinity chromatography and used as antigens for ELISA with patient sera that were confirmed previously by blood smear examinations. When applied to patient sera, 122 (80.3%) out of 152 vivax malaria cases reacted to at least one antigen, while no reactions were observed with 128 uninfected serum samples. We applied this ELISA to the screening of 3,262 civilian residents in endemic regions near the DMZ, which resulted in 236 positively detected (7.2%) cases. This method can be applied to serological diagnosis and mass screening in endemic regions, or can be used as a safety test for transfusion blood in endemic areas.

The Study of Trnascriptional Regulated Gene, $hrp^{2+}$, in Yeast

  • Choi, In-Soon
    • Journal of Life Science
    • /
    • 제11권2호
    • /
    • pp.111-115
    • /
    • 2001
  • This study was designed to clone the SNF2/SW12 helicase-related genes from the fission yeast Schizosaccha-romyces pombe and thereafter to elucidate the common functions of the proteins in this family. The $hrp^{2+}$gene was cloned by polymerase chain reaction amplification using degenerative primers from conserved SNF2 motifs within the ERCC6 gene, which encodes a protein involved in DNA excision repair. Like other SNF2/SW12 family proteins, the deduced amino acid sequence of Hrp2 contains DNA-dependent ATPase/7 helicase domains as well as the chromodomain and the DNA binding domain. This configuration is similar to that of mCHD1 (mouse chromo-ATPase/helicase-DNA-dinding protein 1), suggesting that Hrp2 is a S. pombe homolog of mCHD1, which is thought to function in altering the chromatin structure to control the gene expression. To characterize the function of Hrp2, 4 Uracil-Hrp2 fusion protein, it was purified near homogeneity by affinity chromatography on $Ni^{2+}$-NTA agarose, DEAE-Sepharose ion exchange arid Sephacryl S-200 gel filtration chromatographies. The purified fusion protein exhibited DNA-dependent ATPase activity, which was stimulated by both double-stranded and single-stranded DNA. To determine the steady-state level of $hrp^{2+}$ transcripts during growth, cells were cultured in medium and collected at every 2hr to prepare total RNAs. The northern blot analysis showed that the level of $hrp^{2+}$ transcripts reached its maximum before the cells entered the exponential growth phase and then decreased gradually, This result implies that Hrp2 may be required at early stages of cell growth.h.

  • PDF

Expression and Characterization of β-1,4-Galactosyltransferase from Neisseria meningitidis and Neisseria gonorrhoeae

  • Park, Jae-Eun;Lee, Ki-Young;Do, Su-Il;Lee, Sang-Soo
    • BMB Reports
    • /
    • 제35권3호
    • /
    • pp.330-336
    • /
    • 2002
  • The lgtB genes that encode $\beta$-1,4-galactosyltransferases from Neisseria meningitidis ATCC 13102 and gonorrhoeae ATCC 31151 were isolated by a polymerase chain reaction using the pfu DNA polymerase. They were expressed under the control of lac and T7 promoters in Escherichia coli M15 and BL21 (DE3). Although the genes were efficiently expressed in E. coli M15 at $37^{\circ}C$ (33 kDa), most of the $\beta$-1,4-galactosyltransferases that were produced were insoluble and proteolysed into enzymatically inactive polypeptides that lacked C-terminal residues (29.5 kDa and 28 kDa) during the purification steps. When the temperature of the cell growth was lowered to $25^{\circ}C$, however, the solubility of the $\beta$-1,4-galactosyltransferases increased substantially. A stable N-terminal his-tagged recombinant enzyme preparation could be achieved with E. coli BL21 (DE3) that expressed lgtB. Therefore, the cloned $\beta$-1,4-galactosyltransferases were expressed under the control of the T7 promoter in E. coli BL21 (DE3), mostly to the soluble form at $25^{\circ}C$. The proteins were easily purified to homogeneity by column chromatography using Ni-NTA resin, and were found to be active. The galactosyltransferases exhibited pH optimum at 6.5-7.0, and had an essential requirement for the $Mn^{+2}$ ions for its action. The $Mg^{+2}$ and $Ca{+2}$ ions showed about half of the galactosyltransferase activities with the $Mn^{+2}$ ion. In the presence of the $Fe^{+2}$ ion, partial activation was observed with the $\beta$-1,4-galactosyltransferase from N. meningitidis(64% of the enzyme activity with the $Mn^{+2}$$Ni^{+2}$, $Zn^{+2}$, and $Cu^{+2}$ ions could not activate the $\beta$-1,4-galactosyltransferase activity. The inhibited enzyme activity with the $Ni^{+2}$ ion was partially recovered with the $Mn^{+2}$$Fe^{+2}$, $Zn^{+2}$, and $Cu^{+2}$ ions, the $Mn^{+2}$$\beta$-1,4-galactosyltransferase activity was 1.5-fold stimulated with the non-ionic detergent Triton X-100 (0.1-5%).

미꾸라지 간으로부터 포스포리파아제 C델타 단백질의 생화학적 특성 (Biochemical Characterization of Phospholipase C$\delta$from liver of Mud loach (Misgurnus mizolepis))

  • 서정수;임상욱;김나영;이상환;오현석;이형호;정준기
    • 한국어병학회지
    • /
    • 제18권1호
    • /
    • pp.67-80
    • /
    • 2005
  • 미꾸라지 (mudloach, Misgunus mizolepis)의 간으로부터 클로닝한 phosphoinositide-specific phospholipase C$\delta$ (ML-PLC$\delta$)를 대장균 (E. coli)에서 과발현시켜 만든 재조합 ML-PLC$\delta$와 미꾸라지 간 조직으로부터 직접 정제한 ML-PLC$\delta$의 생화학적 특성을 비교분석하였다. 우선, pET28a vector (Novagen)를 이용하여 E. coli BL21(DE3)에서 과발현된 재조합 ML-PLC$\delta$$Ni^{2+}$-NTA affinity 크로마토그래피 및 gel filtration 칼럼에 의해서 정제되었다. 미꾸라지 간 조직으로 ML-PLC$\delta$는 open heparin 칼럼 및 분석용 heparin 칼럼등을 통하여 부분 정제하였다. 두개의 재조합 및 wild ML-PLC$\delta$는 phosphatidylinositol 4,5-bis-phosphate ($PIP_2$)에 대한 농도 의존적 PLC 활성을 보여주었고, 그 활성은 포유류 PLC$\delta$ 효소와 유사하게 칼슘 농도에 의존적인 활성을 나타내었다. 재조합 및 wild ML-PLC$\delta$는 각각 pH 7.0 및 7.5에서 가장 큰 PI-가수분해 활성을 나타낸다는 사실을 알 수 있었다. 게다가, 재조합 및 wild ML-PLC$\delta$는 sodium doecylcholate (SDC) 및 phosphatidylethanolamine (PE), phosphatidylcholine (PC)와 같은 지질류에 대하여 농도의존적인 활성을 나타내나, spermine과 같은 polyamine류의 존재하에서는 농도 의존적으로 PLC 활성이 감소됨을 알 수 있었다. 미꾸라지 각 기관들의 ML-PLC$\delta$의 발현양상 및 양등을 측정하여 보았을 때 ML-PLC$\delta$는 포유류 PLC$\delta$와 마찬가지로 다양한 형태의 PLC$\delta$가 존재함을 알 수 있었다. 이와 같은 결과들로 미루어서 미꾸라지로부터 얻은 ML-PLC$\delta$는 포유류의 PLC$\delta$ isozymes과 유사한 형태의 생화학적 특성을 가지나, 포유류 PLC$\delta$1과 PLC$\delta$3 isozyme의 생화학적 특성을 함께 가짐을 알 수 있었다.

Heterologous Expression and Characterization of Glycogen Branching Enzyme from Synechocystis sp. PCC6803

  • Lee, Byung-Hoo;Yoo, Young-Hee;Ryu, Je-Hoon;Kim, Tae-Jip;Yoo, Sang-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권8호
    • /
    • pp.1386-1392
    • /
    • 2008
  • A gene (sll0158) putatively encoding a glycogen branching enzyme (GBE, E.C. 2.4.1.18) was cloned from Synechocystis sp. PCC6803, and the recombinant protein expressed and characterized. The PCR-amplified putative GBE gene was ligated into a pET-21a plasmid vector harboring a T7 promoter, and the recombinant DNA transformed into a host cell, E. coli BL21(DE3). The IPTG-induced enzymes were then extracted and purified using Ni-NTA affinity chromatography. The putative GBE gene was found to be composed of 2,310 nucleotides and encoded 770 amino acids, corresponding to approx. 90.7 kDa, as confirmed by SDS-PAGE and MALDI-TOF-MS analyses. The optimal conditions for GBE activity were investigated by measuring the absorbance change in iodine affinity, and shown to be pH 8.0 and $30^{\circ}C$ in a 50 mM glycine-NaOH buffer. The action pattern of the GBE on amylose, an $\alpha$-(1,4)-linked linear glucan, was analyzed using high-performance anion-exchange chromatography (HPAEC) after isoamylolysis. As a result, the GBE displayed $\alpha$-glucosyl transferring activity by cleaving the $\alpha$-(1,4)-linkages and transferring the cleaved maltoglycosyl moiety to form new $\alpha$-(1,6)-branch linkages. A time-course study of the GBE reaction was carried out with biosynthetic amylose (BSAM; $M_p{\cong}$8,000), and the changes in the branch-chain length distribution were evaluated. When increasing the reaction time up to 48 h, the weight- and number-average DP ($DP_w$ and $DP_n$) decreased from 19.6 to 8.7 and from 17.6 to 7.8, respectively. The molecular size ($M_p$, peak $M_w{\cong}2.45-2.75{\times}10^5$) of the GBE-reacted product from BSAM reached the size of amylose (AM) in botanical starch, yet the product was highly soluble and stable in water, unlike AM molecules. Thus, GBE-generated products can provide new food and non-food applications, owing to their unique physical properties.

전염성 췌장괴저바이러스 DRT Strain VP1유전자의 Baculovirus Hyphantria cunea Nuclear Polyhedrosis Virus에 재조합과 발현 (Recombination and Expression of VP1 Gene of Infectious Pancreatic Necrosis Virus DRT Strain in a Baculovirus, Hyphantria cunea Nuclear Polyhedrosis Virus)

  • 이형환;장재혁;차성철;정혜경
    • 대한바이러스학회지
    • /
    • 제27권2호
    • /
    • pp.239-255
    • /
    • 1997
  • 전염성 췌장괴저바이러스 (Infectious pancreatic necrosis virus) DRT 주의 VP1유전자를 대 장균 발현운반체와 Baculovirus에 삽입하여 대장균과 진핵세로에서 VP1단백질의 발현을 연구하였다. 재조합체 pMal-pol 클론 [7]에서 2.7 Kb 단편인 VP1 유전자를 제한효소 XbaI으로 절단하여 Baculovirus 운반체인 pBacPAK9에 클로닝하여 pBacVP1이라 명명하였다. 이 pBacVP1에 클로닝된 VP1유전자를 제한효소 SacI과 PstI으로 절단하여 대장균 발현 운반체인 pQE-30에 클로닝하여 pQEVP1이라 명명하였다. 또한 VP1 단백질의 C-말단에 6개의 히스티딘 $6{\times}His$이 붙어 있는 단백질을 만들기 위하여, pQEVP1 클론의 His부위를 EcoRI으로 절단하고, 또한 pBacVP1을 EcoRI으로 절단하여 생긴 부위에His-EcoRI DNA 단편을 교체시켜 재클로닝하여 pBacHis-VP1을 만들었다. pBacHis-VP1 DNA와 Bsu36I로 처리된 LacZ-Hyphantria cunea nuclear polyhedrosis virus (LacZ-HcNPV)를 함께 lipofectin을 이용하여 곤충세포 (Spodoptera frugiperda cell)에 동시 감염을 시켜서 재조합 바이러스를 선발하여, VP1-HcNPV-1이라 명명하였다. pQEVP1 클론은 6개의 히스티딘 단편이 부착된 VP1단백질을 Ni-NTA resin 크로마토그래피법으로 정제하여 SDS-PAGE와 Western blot으로 확인하였고, 단백질의 활성과 구조에 영향을 주지 않는 6개의 히스티딘 단편 ($6\;{\times}\;His$)이 부착된 94 kDa의 VP1단백질을 정제할 수 있었다. 또한 재조합 바이러스에 감염된 곤충세포에서 VP1 단백질이 발현된 것을 전기영동과 Western blot으로 검색을 한 결과 95 kDa VP1 단백질이 발현이 되었음을 확인하였다.

  • PDF