• Title/Summary/Keyword: Ni-Cu alloy

Search Result 312, Processing Time 0.023 seconds

Interfacial Reaction between Spark Plasma Sintered High-entropy Alloys and Cast Aluminum (고엔트로피합금 분말야금재와 알루미늄 주조재 사이의 계면 반응 연구)

  • Kim, Min-Sang;Son, Hansol;Jung, Cha Hee;Han, Juyeon;Kim, Jung Joon;Kim, Young-Do;Choi, Hyunjoo;Kim, Se Hoon
    • Journal of Powder Materials
    • /
    • v.29 no.3
    • /
    • pp.213-218
    • /
    • 2022
  • This study investigates the interfacial reaction between powder-metallurgy high-entropy alloys (HEAs) and cast aluminum. HEA pellets are produced by the spark plasma sintering of Al0.5CoCrCu0.5FeNi HEA powder. These sintered pellets are then placed in molten Al, and the phases formed at the interface between the HEA pellets and cast Al are analyzed. First, Kirkendall voids are observed due to the difference in the diffusion rates between the liquid Al and solid HEA phases. In addition, although Co, Fe, and Ni atoms, which have low mixing enthalpies with Al, diffuse toward Al, Cu atoms, which have a high mixing enthalpy with Al, tend to form Al-Cu intermetallic compounds. These results provide guidelines for designing Al matrix composites containing high-entropy phases.

A Study of material analysis and its experimentation of metamorphosis and its utilities in Copper Alloy plates for contemporary metal craft (현대금속공예용 동합금판의 재료분석과 형질변환 실험 및 응용에 관한 연구)

  • Lim, Ock-Soo
    • Archives of design research
    • /
    • v.17 no.4
    • /
    • pp.241-250
    • /
    • 2004
  • In this research, the copper alloy plates C2200, C5210, C7701, C8113 were selected to make datum and to identify further usage of metal craft experimentation. For its experimentation, the general welding and TIG welding methods were researched; for 2nd experimentation, the Reticulation and Electroforming skill's differences in color and temperature were researched. With these methods 3 different kinds of works are introduced for sample studies. For this research, Dr. Lee, Dong-Woo who works in Poongsan Metal Co, supported 4 kinds of copper alloy metals. Which are Commercial bronze (Cu-Zn), Deoxidiged Copper(Cu-Sn-P), Nickel Silver (Cu-Ni-Zn), and White Bronze (Cu-Ni); they were applied partly and wholly by the method of Laminatin, Reticulation, Fusing, and Electroforming skills. In case of C2200, the brass, the A. C. TIG welding method is better under 2mm slight plate; the D.C. TIG welding is better upper 2mm plate; and 250~300$^{\circ}C$ is recommended for remain heat treatment. In case of C5210, not having Hydrogen in high temperature return period, doesn't need Oxygen in high temperature and hardening in comparative high temperature neither, it is good for welding. It contains Sn 2-9% ad P 0.03-0.4% generally; and in accordance with the growth rate of Sn contain amount, the harden temperature boundary become broad. In case of cold moment after welding, they are recommended that higher speed TIG welding, smaller melting site and less than 200$^{\circ}C$ for pre-heating temperature. In case of C7701, the 10-20% Ni, 15-30% Zn are widely used.. If it is upper 30% Zn, it become (${\alpha}+{\beta}$) system and adhesive power rate become lower, and the productivity become lower in low temperature but the productivity become higher in high temperature. Nickel Silver's resistance of electricity is well; and the heatproof and incorrodibility is good, too. Lastly, in case of C8113, good at persistence in salty and grind; high in strength of high temperature. In case of white brass, contain 10-30% Nickel and hardened in high temperature and become single phrase. For these reason, the crystallization particles easily become large, if the resistance become higher small amount of Pb, P, S separation rate become higher.

  • PDF

Low Temperature Diffusion Brazing of Commercial Pure(CP)-Ti alloy with Zr-based Filler Metal (Zr기 필러메탈을 이용한 상용 순 티타늄(CP-Ti) 합금의 저온 브레이징 특성)

  • Sun, J.H.;Shin, S.Y.;Hong, J.W.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.29 no.1
    • /
    • pp.1-7
    • /
    • 2016
  • Titanium and its alloys can be usually joined with brazing method. And the alloys should be brazed at low temperature to keep their original microstructure. In this study, the mechanical strength and microstructure of the CP-Ti joint-brazed with $Zr_{54}Ti_{22}Ni_{16}Cu_8$ filler metal having melting temperature of $774{\sim}783^{\circ}C$ were investigated. The tensile strengths of the joint-brazed at $800^{\circ}C$ with $100^{\circ}C/min$ of cooling rate showed more than 400 MPa which was as high as base metal. The $Widmanst{\ddot{a}}tten$ structure consisting of Ti and $Ti_2Ni$ phase was observed in the joint area. However, the tensile strengths of the joint-brazed at $800^{\circ}C$ with $15^{\circ}C/min$ of cooling rate were decreased and the Ti, $(Ti,Zr)_2Ni$ and $Ti_2Ni$ phases were observed at the joint area. It is believed that the $(Ti,Zr)_2Ni$ laves phases could decrease the mechanical strength of the joint and the cooling rate should be controled to get high strength of the titanium joint.

Flow Stress and Deformation Behavior of Zr-based Bulk Metallic Glass Composite in Supercooled Liquid Region (Zr계 비정질 복상 합금의 과냉 액상 영역에서의 유동 음력과 변형거동)

  • Jun, H.J.;Lee, K.S.;Chang, Y.W.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.417-420
    • /
    • 2006
  • The composition and structure of dendrite phase within $Zr_{76.11}Ti_{4.20}Cu_{4.51}Ni_{3.16}Be_{1.49}Nb_{10.53}$ bulk metallic glass (BMG) were confirmed by using an EPMA, XRD and TEM, respectively. The chief elements of dendrite phase were Zr-Ti-Nb and had a BCC structure. The thermal properties of this BMG have been then subsequently investigated by using a differential scanning calorimeter (DSC). The glass transition and crystallization onset temperatures were determined as $339.7^{\circ}C$ and $375.8^{\circ}C$ for this alloy, respectively. Mechanical properties have also been examined by conducting a series of uniaxial compression tests at various temperatures within supercooled liquid region under the strain rates between $10^{-4}/s$ and $3{\times}10^{-2}/s$. The deformation behavior of BMG composite within supercooled liquid region is similar to one of Vit-1 exhibiting amorphous single phase alloy. The flow stresses of BMG composite, however, are entirely higher than those of Vit-1 because dendrite phases are interfere with moving of atoms.

  • PDF

The Effect of Sn on the Glass Formation Ability of the Zr-based Amorphous Alloy (Zr-based 비정질 합금의 비정질 특성에 미치는 Sn의 영향)

  • Lee, Byung-Chul;Park, Heong-Il;Park, Bong-Gyu;Kim, Sung-Gyoo
    • Journal of Korea Foundry Society
    • /
    • v.34 no.2
    • /
    • pp.49-53
    • /
    • 2014
  • In commercial Zr-Nb-Cu-Ni-Al amorphous alloys, expensive element, Zr, was substituted to Sn which was cheaper one, and then, glass forming ability, compressive strength and hardness of them were estimated. Even though the Sn was added up to 1.5%, resulting phase was not changed to the crystalline form. It was confirmed by X-ray diffraction and thermal analyses. In the X-ray profiles, there were no peaks for crystalline phases and typical halo pattern for amorphous phase was appeared at the diffraction angle of $35^{\circ}{\sim}45^{\circ}$. Thermal analyses also showed that the Sn modified alloys were corresponded to the amorphous standards where ${\delta}T$(= Tx - Tg) and Trg(= Tg/Tm) affecting to the amorphous forming ability were more than 50K and 0.60 respectively. Compressive strengths were 1.77 GPa, 1.63 GPa, 1.65 GPa and 1.77 GPa for 0%Sn, 0.5%Sn, 1.0%Sn and 1.5%Sn respectively. Hardnesses of the Sn modified alloys were decreased from 752 Hv to 702 Hv in 1.0%Sn and recovered to 746 Hv in 1.5%Sn.

Separation of Nickel and Tin from copper alloy dross (구리 합금 부산물에서의 주석과 니켈의 분리)

  • Lee, Jung-Il;Hong, Chang Woo;Ryu, Jeong Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.24 no.5
    • /
    • pp.224-228
    • /
    • 2014
  • Recently, the demands for separation/recovery of valuable metals such as nickel or tin from copper based alloys has been attracting much attention from the viewpoints of environmental protection and resource utilization. In this report, experimental results on concentration increasement of nickel and tin compared to the previous report are investigated. Ni is successfully separated by a organic solvent and reduced to the metal powder whose concentration is over 98 %. Sn is separated by a selective solution method and its concentration is increased to 97.5 % by three consecutive solution and reduction process. Crystal structure, surface morphology and microstructure of the separated samples are studied.

Effects of Alloying Elements on Corrosion Resistance of Low Alloyed Steels in a Seawater Ballast Tank Environment (Seawater ballast tank 환경에서 저합금강의 내식성에 미치는 합금원소의 영향)

  • Kim, Dong Woo;Kim, Heesan
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.6
    • /
    • pp.523-532
    • /
    • 2010
  • Co-application of organic coating and cathodic protection has not provided enough durability to low-alloyed steels inseawater ballast tank (SBT) environments. An attempt has made to study the effect of alloy elements (Al, Cr, Cu, Mo, Ni, Si, W) on general and localized corrosion resistance of steels as basic research to develop new low-allowed steels resistive to corrosion in SBT environments. For this study, we measured the corrosion rate by the weigh loss method after periodic immersion in synthetic seawater at $60^{\circ}C$, evaluated the localized corrosion resistance by an immersion test in concentrated chloride solution with the critical pH depending on the alloy element (Fe, Cr, Al, Ni), determined the permeability of chloride ion across the rust layer by measuring the membrane potential, and finally, we analyzed the rust layer by EPMA mapping and compared the result with the E-pH diagram calculated in the study. The immersion test of up to 55 days in the synthetic seawater showed that chromium, aluminium, and nickel are beneficial but the other elements are detrimental to corrosion resistance. Among the beneficial elements, chromium and aluminium effectively decreased the corrosion rate of the steels during the initial immersion, while nickel effectively decreased the corrosion rate in a longer than 30-day immersion. The low corrosion rate of Cr- or Al-alloyed steel in the initial period was due to the formation of $Cr_2FeO_4$ or $Al_2FeO_4$, respectively -the predicted oxide in the E-pH diagram- which is known as a more protective oxide than $Fe_3O_4$. The increased corrosion rate of Cr-alloyed steels with alonger than 30-day exposure was due to low localized corrosion resistance, which is explained bythe effect of the alloying element on a critical pH. In the meantime, the low corrosion rate of Ni-alloyed steel with a longer than 30-day exposure wasdue to an Ni enriched layer containing $Fe_2NiO_4$, the predicted oxide in the E-pH diagram. Finally, the measurement of the membrane potential depending on the alloying element showed that a lower permeability of chloride ion does not always result in higher corrosion resistance in seawater.

A Study on Ageing Characteristics and Alloy Elements of SiCp Reinforced Al Matrix Composites (SiCp입자강화 Al 복합재료에 대한 합금원소의 영향과 시효특성에 관한 연구)

  • Kim, Sug-Won;Lee, Ui-Jong;Woo, Kee-Do;Kim, Dong-Keun
    • Journal of Korea Foundry Society
    • /
    • v.21 no.1
    • /
    • pp.7-14
    • /
    • 2001
  • The research on new DRA(discontinuous reinforced alloy) and CRA(continous reinforced alloy) composites has been carried out to improve the properties of ceramic fiber and particle reinforced metal matrix composites(MMCs). Effects of alloying elements and aging conditions on the microstructures and aging behavior of Al-Si-Cu-Mg-(Ni)-SiCp composite have been examined. The specimens used in this study were manufactured by duplex process. The first squeeze casting is the process to make precomposite and the second squeeze casting is the process to make final composite. The hardening behavior was accelerated with decreasing the size of SiCp particle in the composites. It is considered that the dislocation density increased with increasing SiCp size, due to the different thermal deformation between Al matrix and SiCp during quenching after the solution treatment. Peak aging time to obtain the maximum hardness in 3 ${\mu}m$ SiCp reinforced Al composite was reduced than that in large size(5, 10 ${\mu}m$) of SiCp because of difference in dislocation density. Aging hardening responce(${\Delta}H$ = $H_{Max}.-H_{S.T}$) of composites was greater than that of unreinforced Al alloy because of higher density of second phases in matrix.

  • PDF

The Densification Properties of Distaloy AE-TiC Cermet by Spark Plasma Sintering (방전 플라즈마 소결에 의한 Distaloy AE-TiC 써멧의 치밀화 특성)

  • Cho, Ho-Jung;Ahn, In-Shup;Lee, Young-Hee;Park, Dong-Kyu
    • Journal of Powder Materials
    • /
    • v.14 no.4
    • /
    • pp.230-237
    • /
    • 2007
  • The fabrication of Fe alloy-40 wt.%TiC composite materials using spark plasma sintering process after ball-milling was studied. Raw powders to fabricate Fe alloy-TiC composite were Fe alloy, $TiH_{2}$ and activated carbon. Fe alloy powder was Distaloy AE (4%Ni-1%Cu-0.5%Mo-0.01%C-bal.%Fe) made by Hoeganes company with better toughness and lower melting point. These powders were ball-milled in horizontal attrition ball mill at a ball-to-powder weight ratio of 30 : 1. After that, these mixture powders were sintered by using spark plasma sintering apparatus for 5 min at $1200-1275^{\circ}C$ in vacuum atmosphere under $10^{-3}$ torr. DistaloyAE-40 wt.%TiC composite was directly synthesized by dehydrogenation and carburization reaction during sintering process. The phase transformation of as-milled powders and sintered materials was confirmed using X-ray diffraction (XRD) and transmission electron microscope (TEM). The density and harness materials was measured in order to confirm the densification behavior. In case of DistaloyAE-40 wt.%TiC composite retained for 5 min at $1275^{\circ}C$, it has the relative density of about 96% through the influence of rapid densification and fine TiC particle reinforced Fe-based composites materials.

Characteristics of Sn-Ag-Cu-In Solder Alloys Incorporating Low Ag Content (소량의 Ag를 함유하는 Sn-Ag-Cu-In계 솔더 재료의 특성 분석)

  • Yu, A-Mi;Lee, Jong-Hyun;Lee, Chang-Woo;Kim, Mok-Soon;Kim, Jeong-Han
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.18-18
    • /
    • 2007
  • 지난 수년 동안 Sn-3.0Ag-0.5Cu 합금은 전자산업의 표준 무연솔더 조성으로 전자제품의 제작에 사용되어져 왔으며, 그 신뢰성도 충분히 검증되어 대표적인 무연 솔더 조성으로의 입지를 굳혀왔다. 그러나 전자제품의 mobile화에 따른 내충격 신뢰성에 대한 요구와 최근의 급격한 Ag 가격의 상승은 Ag 함량의 축소에 의한 원가절감을 요청하게 되었으며, 이에 따라 소량의 Ag를 함유하는 솔더 조성 개발에 대한 연구가 산업 현장을 중심으로 절실히 요청되고 있다. Sn-Ag-Cu의 3원계 함긍에서 Ag는 합금의 융점을 낮추고, 강도와 같은 합금의 기계적 특성을 증가시키는 한편, 모재에 대한 합금의 젖음성을 향상시키는데 필수적인 원소로 인식되고 있다. 따라서 Sn-Ag-Cu의 3원계 함금에서 Ag의 함량을 감소시키게 되면, 합금액 액상선 온도와 고상선 온도가 벌어져 pasty range(또는 mush zone)가 증가하게 되고, wettability도 감소하게 되어 솔더 합금으로서의 요구 특성을 많이 상실하게 된다. 또한 Ag 함량을 감소시키게 되면 합금의 elongation이 향상되면서 내 impact 수명이 향상되는 효과를 볼 수 있으나, 합금의 creep 특성 및 기계적인 강도는 감소하면서 열싸이클링 수명은 감소하는 경향을 나타내게 된다. 따라서 솔더 합금의 내 impact 수명과 열싸이클링 수명을 동시에 만족시키지 위해서는 Ag 함량을 최적화하기 위한 고려가 필요하며, 합금원소에 대한 연구가 요청된다고 하겠다. 한편 Ag의 함량을 3wt.% 이상으로 첨가할 경우에도 비교적 느린 응고 속도에서는 조대한 판상의 $Ag_3Sn$ 상을 형성하는 경향이 있어 외관 물량을 야기 시킬 가능성이 매우 커지는 현상도 보고되고 있다. 따라서 Ag의 첨가량을 최적화 하면서 솔더 재료로서의 특성을 계속적으로 유지하기 위해서는 제 4 원소의 함유가 필수적이라고 할 수 있다. 본 연구에서는 Sn-Ag-Cu계에 첨부하는 제 4원소로서 In을 선택하였다. 비록 In은 Ag보다 고가이기 때문에 산업적인 적용을 위한 솔더 합금 원소로는 거의 각광받지 못했으나, 본 연구의 결과로는 In은 매우 소량 첨가할 경우에도 Sn-Ag-Cu계 합금, 특히 소량의 Ag를 함유하는 Sn-Ag-Cu계 합금의 wettabilty와 기계적 특성 향상에 매우 효과적임을 알 수 있었다. 결론적으로 본 연구를 통해 구현된 Sn-Ag-Cu-In계 최적 솔더 조성의 경우 Sn-3.0Ag-0.5Cu의 표준 조성에 비하여 약 18%의 원자재 가격 절감을 도모할 수 있을 것으로 예상되는 한편. Sn-3.0Ag-0.5Cu에 유사하거나 우수한 wettability 특성을 나타내었고. Sn-1.0Ag-0.5Cu 또는 Sn-l.2Ag-0.5Cu-0.05Ni 조성보다는 월등히 우수한 wettability 특성을 나타내었다. 더구나 Sn-Ag-Cu-In계 최적 솔더 조성은 합금의 강도 저하는 최소화 시키면서 합금의 elongation은 극적으로 향상시켜 합금의 toughness 값이 매우 우수한 특성을 가짐을 알 수 있었다. 이렇게 우수한 toughness 값은 솔더 조인트의 대표적 신뢰성 요구 특성인 열싸이클링 수명과 내 impact 수명을 동시에 향상시킬 수 있을 것으로 예상된다. 요컨대 본 연구를 통해 구현된 Sn-Ag-Cu-In계 솔더 조성은 최적 솔더 조성에서 요구되는 4가지 인자, 즉, 저렴한 원재료 가격, 우수한 wettability 특성, 합금 자체의 높은 toughness, 안정하고 낮은 성장 속도의 계면 반응층 생성을 모두 만족시키는 특징을 가짐으로서 기존 무연솔더 조성의 새로운 대안으로 자리 잡을 것으로 기대된다.

  • PDF