• Title/Summary/Keyword: Ni-Cr-X

Search Result 218, Processing Time 0.03 seconds

The Effect of Nb-doped TiO2 Coating for Improving Stability of NiCrAl Alloy Foam (NiCrAl 합금 폼의 안정성 향상을 위해 코팅된 Nb-doped TiO2의 효과)

  • Jo, Hyun-Gi;Shin, Dong-Yo;Ahn, Hyo-Jin
    • Korean Journal of Materials Research
    • /
    • v.29 no.5
    • /
    • pp.328-335
    • /
    • 2019
  • Nb-doped $TiO_2$(NTO) coated NiCrAl alloy foam for hydrogen production is prepared using ultrasonic spray pyrolysis deposition(USPD) method. To optimize the size and distribution of NTO particles based on good physical and chemical stability, we synthesize particles by adjusting the weight ratio of the Nb precursor solution(5 wt%, 10 wt% and 15 wt%). The morphological, chemical bonding, and structural properties of the NTO coated NiCrAl alloy foam are investigated by X-ray diffraction(XRD), X-ray photo-electron spectroscopy(XPS), and Field-Emission Scanning Electron Microscopy(FESEM). As a result, the samples of controlled Nb weight ratio exhibit a common diffraction pattern at ${\sim}25.3^{\circ}$, corresponding to the(101) plane, and have chemical bonding(O-Nb=O) at 534 eV. The NTO particles with the optimum weight ratio of N (10 wt%) show a uniform distribution with a size of ~18.2-21.0 nm. In addition, they exhibit the highest corrosion resistance even in the electrochemical stability estimation. As a result, the introduction of NTO coated NiCrAl alloy foam by USPD improves the chemical stability of the NiCrAl alloy foam by protecting the direct electrochemical reaction between the foam and the electrolyte. Thus, the optimized NTO coating can be proposed for excellent protection of NiCrAl alloy foam for hydrocarbon-based steam methane reforming(SMR).

Effect of the Alloying Elements in Ag-Cu-Zr-X Brazing Alloy on the Microstructure and the Bond Strength of $Al_2O_3$/Ni-Cr Steel Brazed Joint (알루미나/니켈크롬강 접합체의 미세조직 및 접합강도에 미치는 Ag-Cu-Zr-X 브레이징 합금성분의 영향)

  • Kim, Jong-Heon;Yoo, Yeon-Chul
    • Transactions of Materials Processing
    • /
    • v.7 no.5
    • /
    • pp.465-473
    • /
    • 1998
  • The effect of alloying elements of Ag-Cu-Zr-X brazing alloy on the microstructure and the bond strength of $Al_2O_3/Ni-Cr$ brazed steel joint was investigated. The reaction layer, $ZrO_2$ (a=5.146 ${\AA}$ , b=5.213 ${\AA}$ , c=5.311 ${\AA}$ )was formed at the interface of $Al_2O_3/Ni-Cr$ steel joint by the redox reaction between alumina and Zr. The addition of An and Al to the Ag-Cu-Zr brazing alloy gave rise to changes in the thickness of the reaction product layer and the morphology of the brazement. Sn caused the segregation of Zr was decreased b Al the $ZrO_2$ layer formed at the Ag-Cu-Zr-Al alloy was thinner than that of $ZrO_2$ formed at the Ag-Cu-Zr-An alloy. The fracture shear strength was strongly dependent on the microstructure of the brazement. Brazing with Ag-Cu-Zr-Sn alloy resulted in a better bond strength than with Ag-Cu-Zr or Ag-Cu-Zr-Al alloy.

  • PDF

The Electrochemical Behavior of Ni-base Metallic Glasses Containing Cr in H2SO4 Solutions

  • Arab, Sanaa.T.;Emran, Khadijah.M.;Al-Turaif, Hamad A.
    • Journal of the Korean Chemical Society
    • /
    • v.56 no.4
    • /
    • pp.448-458
    • /
    • 2012
  • In order to develop alloy resistance in aggressive sulphat ion, the corrosion behavior of metallic glasses $Ni_{92{\cdot}3}Si_{4.5}B_{32}$, $Ni_{82,3}Cr_7Fe_3Si_{4.5}B_{3.2}$ and $Ni_{75.5}Cr_{13}Fe_{4.2}Si_{4.5}B_{2.8}$ (at %) at different concentrations of $H_2SO_4$ solutions was examined by electrochemical methods and Scanning Electron Microscope (SEM) and X-ray Photoelectron Microscopy (XPS) analyses. The corrosion kinetics and passivation behavior was studied. A direct proportion was observed between the corrosion rate and acid concentration in the case of $Ni_{92{\cdot}3}Si_{4.5}B_{32}$ and $Ni_{75.5}Cr_{13}Fe_{4.2}Si_{4.5}B_{2.8}$ alloys. Critical concentration was observed in the case of $Ni_{82,3}Cr_7Fe_3Si_{4.5}B_{3.2}$ alloy. The influence of the alloying element is reflected in the increasing resistance of the protective film. XPS analysis confirms that the protection film on the $Ni_{92{\cdot}3}Si_{4.5}B_{32}$ alloy was NiS which is less protective than that formed on Cr containing alloys. The corrosion rate of $Ni_{82,3}Cr_7Fe_3Si_{4.5}B_{3.2}$ and $Ni_{75.5}Cr_{13}Fe_{4.2}Si_{4.5}B_{2.8}$. alloys containing 7% and 13% Cr are $7.90-26.1{\times}10^{-3}$ mm/y which is lower about 43-54 times of the alloy $Ni_{92{\cdot}3}Si_{4.5}B_{32}$ (free of Cr). The high resistance of $Ni_{75.5}Cr_{13}Fe_{4.2}Si_{4.5}B_{2.8}$ alloy at the very aggressive media may due to thicker passive film of $Cr_2O_3$ which hydrated to hydrated chromium oxyhydroxide.

High temperature oxidation of MCrAlY thermal barrier coating (MCrAlY 열차폐 코팅의 고온산화)

  • 고재황;이동복
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.219-219
    • /
    • 2003
  • HVOF(High Velocity Oxygen Fuel)법을 사용한 MCrAlY(M=Ni, Co, Fe)계 열차폐 코팅(thermal barrier coating)은 열기관 내부의 극심한 환경 부하에 대해 구조물 표면에 열적, 화학적 장벽을 형성함으로써 구조물의 내구성을 향상시킨다 이와 동시에 열차폐 효과는 구조물의 온도상승 없이 내부 가동 온도를 높일 수 있게 함으로써 열효율을 상승시키고 연료 효율을 높여 가동비용 절감을 이룰 수 있는 동시에 고 연소를 통한 오염원의 배출을 감소시킬 수 있다. 본 연구에서는 $H_2O$$_2$=5:1 분위기 하에서 HVOF법을 사용하여 Hastelloy-X 기판위에 125$\mu\textrm{m}$의 두께로 다음 5종류의 (Ni, Co, Cr)계 MCrAlY 코팅을 용사시켰다. 준비된 (Ni, Co)-Cr-Al-(Y, Ta, Re), (Ni, Co)-Cr-Al-(Y, Re), (Ni, Co)-Cr-Al-(Y, Ta), (Ni, Co)-Cr-Al-Y, (Ni,Co)-Cr-Al-Ir 코팅시편에 대한 산화성질을 조사하기 위해 대기 중 1000, 1100, 120$0^{\circ}C$에서 50, 100, 150, 200시간 등온실험(Isothermal oxidation)을 실시하였고, XRD, SEM/EDS, EPMA를 이용하여 생성된 산화막과 코팅 시편의 조직 변화를 조사하였다. 산화온도와 산화시간이 증가할수록 산화막의 박리가 많이 발생하였으며, 분석 결과 미세하게 분포된 a-Al$_2$O$_3$ 입자, NiCr$_2$O$_4$스피넬 상, 미세한 Cr$_2$O$_3$가 관찰되었고, 코팅 조성 변화에 따라 형성되는 이들 산화물의 존재비가 달라졌으며, 산화온도가 높아질수록 산화속도가 가속화되었다.

  • PDF

Corrosion Behavior of Inconel Alloys in a Hot Lithium Molten Salt under an Oxidizing Atmosphere (고온 리튬용융염계 산화분위기에서 Inconel 합금의 부식거동)

  • Cho, Soo-Hang;Seo, Chung-Seok;Yoon, Ji-Sup;Park, Seoung-Won
    • Korean Journal of Materials Research
    • /
    • v.16 no.9
    • /
    • pp.557-563
    • /
    • 2006
  • The electrolytic reduction of spent oxide fuel involves the liberation of oxygen in a molten LiCl electrolyte, which results in a chemically aggressive environment that is too corrosive for typical structural materials. So, it is essential to choose the optimum material for the process equipment handling molten salt. In this study, corrosion behavior of Inconel 713LC, MA 754, X-750 and 718 in the molten salt $LiCl-Li_2O$ under an oxidizing atmosphere was investigated at $650^{\circ}C$ for $72{\sim}216$ hours. Inconel 713LC alloy showed the highest corrosion resistance among the examined alloys. Corrosion products of Inconel 713LC were $Cr_2O_3,\;NiCr_2O_4$ and NiO, and those of Inconel MA 754 were $Cr_2O_3\;and\;Li_2Ni_8O_{10}$ while $Cr_2O_3,\;NiFe_2O_4\;and\;CrNbO_4$ were produced from Inconel 718. Also, corrosion products of Inconel X-750 were found to be $Cr_2O_3,\;NiFe_2O_4\;and\;(Cr,Nb,Ti)O_2$. Inconel 713LC showed local corrosion behavior and Inconel MA 754, 718, X-750 showed uniform corrosion behavior.

A study on the electrical characteristic of 0-02PYW-0-98PZT ceramics dopped with NiO, $Cr_2O_3$ (NiO, $Cr_2O_3$를 첨가한 0-02PYW-0.98PZT세라믹의 전기적특성에 관한 연구)

  • 김진섭;김현철;손효승;임인호;배선기
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.638-641
    • /
    • 1999
  • In consideration of Dielectric loss and Temperature stability, 3-element system dopped with NiO, $Cr_2O_3$, well-known as Hardner and Stabilizer whose primary element is PZT was eximanated its structure, Temperature Coefficient of Capacitor, relative resistivity for Temperature Compensation condensor study. dopping with Nio, $Cr_2O_3$, Temperature Characteristic is developed, Dielectric loss largely represented useful1 small values in specimens dopped with NiO 0.2wt%, and specimence sintered at $110^{\circ}C$ dopped with $Cr_2O_3$, 0.1wt% also relative resistivity largely showed tendency of decrement According to dopping NiO more.

  • PDF

Wear Behaviors of WC-CoCr and WC-CrC-Ni Coatings Sprayed by HVOF (고속화염 용사법으로 제조된 WC-CoCr 코팅과 WC-CrC-Ni 코팅의 내마모 거동)

  • Lee, Seoung Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.6
    • /
    • pp.204-211
    • /
    • 2020
  • The high-velocity oxy-fuel (HVOF) thermal spraying coating technique has been considered a promising replacement for traditional electrolytic hard chrome plating (EHC), which caused environmental pollution and lung cancer due to toxic Cr6+. In this paper, two types of cermet coatings were prepared by HVOF spraying: WC-CoCr and WC-CrC-Ni coatings. The produced coatings were analyzed extensively in terms of the micro-hardness, porosity, crystalline phase and microstructure using a hardness tester, optical microscopy, X-ray diffraction, and scanning electron microscopy (including energy dispersed spectroscopy (EDS)), respectively. The wear and friction behaviors of the coatings were evaluated comparatively by reciprocating sliding wear tests at 25 ℃, 250 ℃, and 450 ℃. The results revealed correlations among the microstructures, metallic binder matrixes, porosities, and wear performance of the coatings. For example, WC-CoCr coatings showed better sliding wear resistance than WC-CrC-Ni coatings, regardless of the test temperature due to the more homogeneous microstructure, Co-rich, Cr-rich metallic binder matrix, and lower porosity.

Improved high-performance La0.7Sr0.3MxFe1-xO3 (M = Cu, Cr, Ni) perovskite catalysts for ortho-para hydrogen spin conversion

  • Choi, Jeong-Gil;Choi, Euiji;Kweon, Soon-Cheol;Oh, In-Hwan
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.28 no.1
    • /
    • pp.44-50
    • /
    • 2018
  • The improved high-performance Fe-based perovskite-type oxides ($La_{0.7}Sr_{0.3}M_xFe_{1-x}O_3$, M = Cu, Cr, Ni) were synthesized by a citrate method and characterized by SEM, EDS, XRD and NMR spectroscopy analyses. The characterization analyses revealed that the stoichiometric amounts of lattice oxygen were existed in all of perovskite samples except for a nickel-doped perovskite. Fe-based perovskites exhibited a surprising result for ortho-para $H_2$ spin conversion reaction, indicating two orders of magnitude higher conversions and conversion rates than commercial $Fe_2O_3$. It was considered that this conversion difference might be attributed to the presence of oxygen vacancies in Fe-based perovskites prepared in this study.

Comparison of the marginal and internal fit of cores fabricated by Ni-Cr alloy(non-beryllium) and Co-Cr alloy (베릴륨이 함유되지 않은 니켈-크롬 합금 코어와 코발트-크롬 합금 코어의 적합도 비교평가)

  • Kim, Ki-Baek;Kim, Jae-Hong;Kim, Woong-Chul;Kim, Ji-Hwan
    • Journal of Technologic Dentistry
    • /
    • v.34 no.4
    • /
    • pp.353-359
    • /
    • 2012
  • Purpose: The aim of this study measured and compared the marginal and internal fit of metal cores with two base metal alloy (Ni-Cr alloy(non-beryllium), Co-Cr alloy). Methods: Maxillary right first molar abutment fabricated by titanium was prepared for this study. Impressions(10ea) were made from titanium model, and study models were poured with improved dental stone. Wax cores of twenty were prepared for burn-out and casting. Ten wax cores cast Ni-Cr alloy(non-Be), and finally ten cast Co-Cr alloy. Marginal and internal fit of cores was evaluated using silicone replica technique and digital microscope(x160). The data were statistically analyzed with the independent samples t-test (${\alpha}$ <.05). Results: Mean(standard deviation, SD) marginal and internal fit total size of Ni-Cr alloy(non-Be) group was $73.3(14.4){\mu}m$ and of Co-Cr alloy group $65.6(17.4){\mu}m$. The marginal and internal fit total size of Ni-Cr alloy group(non-Be) was statistically significantly greater than that of Co-Cr alloy group (P=.004). Conclusion: Co-Cr alloy cores in this study had a better marginal fit than Ni-Cr alloy(non-Be) cores.