• 제목/요약/키워드: Ni-Cr-Mo steel

검색결과 108건 처리시간 0.025초

12Cr강의 피로특성에 미치는 Ni+Mo 첨가의 영향 (Effect of Ni and Mo Addition on Fatique Property in 12Cr Steel)

  • 이진경;배동수
    • 한국산업융합학회 논문집
    • /
    • 제24권4_2호
    • /
    • pp.435-441
    • /
    • 2021
  • This research was performed to study the effect of the Ni + Mo addition on the fatigue properties in 12Cr steel. After heat treatment of 12Cr steel and 12Cr-Ni-Mo steel, tensile tests, impact tests, hardness tests, and rotary bending fatigue tests were performed, respectively. The fatigue fracture surface was observed and analyzed using SEM and EDS. The fatigue limit of 12Cr steel was 554 MPa, which was 49 MPa higher than 505 MPa of 12Cr-Ni-Mo steel. Striations, which are the shape of the typical fatigue fracture surface, were observed at the fracture surface near the starting point of fatigue fracture in the 12Cr steel and 12Cr-Ni-Mo steel. However, unlike the case of 12Cr steel, 12Cr-Ni-Mo steel also had a mixed fracture surface with the fatigue and the ductile fracture surface. When brittle non-metallic inclusions exist near the starting point of fatigue failure, the crack propagation was further promoted and the fatigue life was drastically reduced.

원자로 압력용기용 Mn-Mo-Ni계 및 Ni-Mo-Cr계 저합금강의 미세조직과 기계적 특성 비교 (Comparison of Microstructure & Mechanical Properties between Mn-Mo-Ni and Ni-Mo-Cr Low Alloy Steels for Reactor Pressure Vessels)

  • 김민철;박상규;이봉상
    • 대한금속재료학회지
    • /
    • 제48권3호
    • /
    • pp.194-202
    • /
    • 2010
  • Application of a stronger and more durable material for reactor pressure vessels (RPVs) might be an effective way to insure the integrity and increase the efficiency of nuclear power plants. A series of research projects to apply the SA508 Gr.4 steel in ASME code to RPVs are in progress because of its excellent strength and durability compared to commercial RPV steel (SA508 Gr.3 steel). In this study, the microstructural characteristics and mechanical properties of SA508 Gr.3 Mn-Mo-Ni low alloy steel and SA508 Gr.4N Ni-Mo-Cr low alloy steel were investigated. The differences in the stable phases between these two low alloy steels were evaluated by means of a thermodynamic calculation using ThermoCalc. They were then compared to microstructural features and correlated with mechanical properties. Mn-Mo-Ni low alloy steel shows the upper bainite structure that has coarse cementite in the lath boundaries. However, Ni-Mo-Cr low alloy steel shows the mixture of lower bainite and tempered martensite structure that homogeneously precipitates the small carbides such as $M_{23}C_6$ and $M_7C_3$ due to an increase of hardenability and Cr addition. In the mechanical properties, Ni-Mo-Cr low alloy steel has higher strength and toughness than Mn-Mo-Ni low alloy steel. Ni and Cr additions increase the strength by solid solution hardening. In addition, microstructural changes from upper bainite to tempered martensite improve the strength of the low alloy steel by grain refining effect, and the changes in the precipitation behavior by Cr addition improve the ductile-brittle transition behavior along with a toughening effect of Ni addition.

고에너지용 저합금강 제동디스크의 마모 특성 평가 (Evaluation of Wear Characteristics of Low-alloy Steel Brake Discs for High Energy Capacity)

  • 이동규;김경일;조규섭;김경택
    • 한국항행학회논문지
    • /
    • 제28권4호
    • /
    • pp.532-537
    • /
    • 2024
  • 본 연구에서는 항공기 및 고속전철 등 대형 수송기기의 제동디스크에 적용되는 Ni-Cr-Mo-V계 및 Ni-Cr-Mo계 저합금강의 합금 성분 변화에 따른 마모 특성을 평가하였다. 경도시험 결과, C-Mo-V강의 경도는 39.4±0.9HRc로 가장 높았고, Ni-Cr-Mo강이 32.4±0.6HRc로 가장 낮았다. 마찰계수는 수직하중이 증가함에 따라 감소하는 경향을 보였으며, 수직하중 1 N에서 Ni-Cr-Mo강의 마찰계수가 0.842, 수직하중 5 N에서 Mn-Cr-V강이 0.696으로 가장 높았다. Ni-Cr-Mo강은 수직하중 1 N에서 마모흔의 폭 711 ㎛, 깊이 8.24 ㎛, 마모량 11 mg, 수직하중 5 N에서 폭 1,017 ㎛, 깊이 19.17 ㎛, 마모량 17 mg으로 가장 큰 마모흔의 폭, 깊이 및 마모량을 보여주었다. 마모기구 분석 결과, 모든 시편에서 패임, 박리 및 응착이 관찰되었고, Ni-Cr-Mo강에서 소성변형이 더 우세하게 관찰되었다.

동위원소희석 유도결합플라스마질량분석법에 의한 저 합금강 표준시료중의 Ni, Cr, Mo의 분석 (Determination of Ni, Cr, Mo in Low Alloy Steel Reference Materials by Isotope Dilution Inductively Coupled Plasma Mass Spectrometry)

  • 서정기;우진춘;민형식;임명철
    • 분석과학
    • /
    • 제16권1호
    • /
    • pp.82-89
    • /
    • 2003
  • Isotope dilution mass spectrometry (IDMS) was applied to the determination of Ni, Cr, Mo in low alloy steel reference materials. The Mo isotope ratio measurement was performed by dynamic reaction cell inductively coupled plasma mass spectrometry (DRC-ICP/MS) using ammonia as a reaction cell gas. In the case of Ni and Cr measurement, all data were obtained at medium resolution mode (m/${\Delta}m=3000$) of double focusing sector field high resolution inductively coupled plasma mass spectrometry (HR-ICP/MS). For the method validation of the technique was assessed using the certified reference materials such as NIST SRM 361, NIST SRM 362, NIST SRM 363, NIST SRM 364, NIST SRM 36b. This method was applied to the determination of Ni, Cr and Mo in low alloy steel sample (CCQM-P25) provided by NMIJ for international comparison study.

Ni-Cr-Mo계 고강도 저합금강 용접클래드 계면의 미세조직 특성 평가 (Microstructural Characterization of Clad Interface in Welds of Ni-Cr-Mo High Strength Low Alloy Steel)

  • 김홍은;이기형;김민철;이호진;김경호;이창희
    • 대한금속재료학회지
    • /
    • 제49권8호
    • /
    • pp.628-634
    • /
    • 2011
  • SA508 Gr.4N Ni-Cr-Mo low alloy steel, in which Ni and Cr contents are higher than in commercial SA508 Gr.3 Mn-Mo-Ni low alloy steels, may be a candidate reactor pressure vessel (RPV) material with higher strength and toughness from its tempered martensitic microstructure. The inner surface of the RPV is weld-cladded with stainless steels to prevent corrosion. The goal of this study is to evaluate the microstructural properties of the clad interface between Ni-Cr-Mo low alloy steel and stainless weldment, and the effects of post weld heat treatment (PWHT) on the properties. The properties of the clad interface were compared with those of commercial Mn-Mo-Ni low alloy steel. Multi-layer welding of model alloys with ER308L and ER309L stainless steel by the SAW method was performed, and then PWHT was conducted at $610^{\circ}C$ for 30 h. The microstructural changes of the clad interface were analyzed using OM, SEM and TEM, and micro-Vickers hardness tests were performed. Before PWHT, the heat affected zone (HAZ) showed higher hardness than base and weld metals due to formation of martensite after welding in both steels. In addition, the hardness of the HAZ in Ni-Cr-Mo low alloy steel was higher than that in Mn-Mo-Ni low alloy steel due to a comparatively high martensite fraction. The hardness of the HAZ decreased after PWHT in both steels, but the dark region was formed near the fusion line in which the hardness was locally high. In the case of Mn-Mo-Ni low alloy steel, formation of fine Cr-carbides in the weld region near the fusion line by diffusion of C from the base metal resulted in locally high hardness in the dark region. However, the precipitates of the region in the Ni-Cr-Mo low alloy steel were similar to that in the base metal, and the hardness in the region was not greatly different from that in the base metal.

압력용기용 Ni-Mo-Cr계 고강도 저합금강의 합금원소 함량 변화에 따른 미세조직학적 특성변화의 열역학 계산 및 평가 (Thermodynamic Calculation and Observation of Microstructural Change in Ni-Mo-Cr High Strength Low Alloy RPV Steels with Alloying Elements)

  • 박상규;김민철;이봉상;위당문
    • 대한금속재료학회지
    • /
    • 제46권12호
    • /
    • pp.771-779
    • /
    • 2008
  • An effective way of increasing the strength and fracture toughness of reactor pressure vessel steels is to change the material specification from that of Mn-Mo-Ni low alloy steel(SA508 Gr.3) to Ni-Mo-Cr low alloy steel(SA508 Gr.4N). In this study, we evaluate the effects of alloying elements on the microstructural characteristics of Ni-Mo-Cr low alloy steel. The changes in the stable phase of the SA508 Gr.4N low alloy steel with alloying elements were evaluated by means of a thermodynamic calculation conducted with the software ThermoCalc. The changes were then compared with the observed microstructural results. The calculation of Ni-Mo-Cr low alloy steels confirms that the ferrite formation temperature decreases as the Ni content increases because of the austenite stabilization effect. Consequently, in the microscopic observation, the lath martensitic structure becomes finer as the Ni content increases. However, Ni does not affect the carbide phases such as $M_{23}C_6 $ and $M_7C_3$. When the Cr content decreases, the carbide phases become unstable and carbide coarsening can be observed. With an increase in the Mo content, the $M_2C$ phase becomes stable instead of the $M_7C_3$ phase. This behavior is also observed in TEM. From the calculation results and the observation results of the microstructure, the thermodynamic calculation can be used to predict the precipitation behavior.

Ni-Cr-Mo-V 내열강의 마찰마모 특성 연구 (A Study on Tribological Characteristics for High Temperature Alloy Steel with Ni-Cr-Mo-V)

  • 임호기;배문기;김태규
    • 열처리공학회지
    • /
    • 제29권6호
    • /
    • pp.284-291
    • /
    • 2016
  • High temperature alloy steel such as Ni-Cr-Mo-V material has excellent properties of high strength and high heating resistance. It has been used for several military weapon components such as gun barrel of a warship, turbine rotor and turbine disk for nuclear power plant. Being curious about this material required excellent wear resistance and durability in extreme environmental conditions. A dry wear test at the ambient air and Ar gas conditions in the room temperature were performed in this study. What's more a lubricant wear test at different temperature was conducted. In addition that DLC was coated on Ni-Cr-Mo-V alloy steel substrate with a thickness of $3{\mu}m$, a property of it was compare with lubricant conditions. All the coefficient of friction and wear volume, comparing with DLC coated specimens. The test parameters were selected as follows: 10 N for normal load; 80 rpm for sliding wear speed; and 300 m for the sliding wear distance.

이온 실화처리한 Ni-Cr-Mo강의 저온파괴인성에 관한 연구 (A Study on the Low Temperature Fracture Toughness of Ion-nitrided Ni-Cr-Mo Steel)

  • 오세욱;윤한기;문인철
    • 한국해양공학회지
    • /
    • 제1권2호
    • /
    • pp.101-112
    • /
    • 1987
  • Fracture toughness characterization in the transition region is examined for heat-treated and ionnitrided Ni-Cr-Mo steel. After heat treatment for the specimens of Ni-Cr-Mo steel, organizations of specimens-specimens which are heat-treated and ion-nitrided for 4 hours at 500 .deg. C and 5 torr in 25%N/dub 2/-75%H/sub 2/mixed gas-, hardness variety, and X-ray diffraction pattern of the ion-nitriding compound layer are observed. Fracture toughenss test of unloading compliance method were conducted over the regions from room trmperature to -70.deg. C. The compound layer was consisted of r'=Fe/sub 4/N phase and ion-nitrided layer's depth was 200mm from surface. The transition regions of heat-treated and ion-nitrided specimens were about -30.deg. C and -50.deg. C, respectively. The transition region of ion-nitrided specimens is estimated less than that of heat-treated one, and this is the effect of ion-nitriding.

  • PDF