• Title/Summary/Keyword: Ni-Cr-Al

Search Result 471, Processing Time 0.026 seconds

EFFECTS OF SPUTTERED NON-PRECIOUS METALLIC THIN FILMS ON THE CHEMICAL BONING BETWEEN DENTAL ALLOY AND PORCELAIN (비귀금속 박막이 치과용합금과 치과용도재와의 화학적결합에 미치는 영향)

  • Cho Sung-Am
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.30 no.4
    • /
    • pp.481-492
    • /
    • 1992
  • Author measured the bonding strength between Dental Porcelain and Nonprecious Dental Alloy and analyzed diffusion Phenomena at the interfaceby by Auger electron spectroscopy and also Electron spectroscopy for Chemical Analysis. The each specimen was sputtered with Al, Cr, In and Sn. 1. Ni whic is the main element of the matris of dental nonprecious alloy diffuse more than the other element and the Ni diffusion rate of each specimen was well coordinated with the bonding strength of each. 2. The Sn thin film suppress the diffusion rate of Ni of matrix into the Dental Porcelain than the In or Cr thin films. 3. The Al thin film suppress the diffusion rate of Ni than the Sn thin film. 4. The main coponent of dental porcelain : Al, Si, Mo diffused into the matrix of alloy. It means that the each element of dental alloy and dental porelain diffused into the each other part.

  • PDF

Corrosion Behavior of Superalloys in Hot Molten Salt under Oxidation Atmosphere (고온용융염계 산화분위기에서 초합금의 부식거동)

  • 조수행;임종호;정준호;이원경;오승철;박성원
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2004.06a
    • /
    • pp.285-291
    • /
    • 2004
  • As a part of assessment of the structural material for the molten salt handling system, corrosion behavior of Inconel 718, X-750, Haynes 75 and Haynes 263 alloys in the molten salt of LiCl-Li$_2$O-O$_2$was investigated in the range of temperature; $650^{\circ}C$, time; 24~168h, $Li_2O$; 3wt%, mixed gas; Ar~10%$O_2$. In the molten salt of LiCl-$Li_2O-O_2$, the order corrosion rate was Haynes 263 < Haynes 75 < Inconel X-750 < Inconel 718. Haynes 263 alloy showed the highest corrosion resistance among the examined alloys. Corrosion products of alloys were as fellows: Haynes 75: $Cr_2O_4$, $NiFe_2O_4$, $LiNiO_2$, $Li_2NiFe_2O_4$, Inconel 718; $Cr_2O_4$, $NiFe_2O_4$, Haynes 263; $Li(Ni,Co)O_2$, $NiCr_2O_4$, $LiTiO_2$, Inconel X-750; $Cr_2O_3$, $NiFe_2O_4$,$FeNi_3$, (Al,Nb,Ti)$O_2$. Haynes 263 showed local corrosion behavior and Haynes 75, Inconel 718 and Inconel X-750 showed uniform corrosion behavior.

  • PDF

Transient Liquid Phase Bonding of Ni-Cr Heat Resisted Cast Steel (Ni-Cr계 내열주강의 천이액상 접합)

  • 권영순;신철균;김현식;김환태;김지순;석명진
    • Journal of Powder Materials
    • /
    • v.9 no.3
    • /
    • pp.189-198
    • /
    • 2002
  • In this work, transient liquid phase (TLP) bonding of Ni-Cr heat resisted cast alloy (HP) was investigated. And also the behaviors of the solid particles distributed in the interlayer during TLP bonding were investigated. The MBF-60 and solid particles (Ni, Fe, and $Al_2O_3$ powders respectively) added MBF-60 which will be a liquid phase coexisting with solid particles at the bonding temperature were used as insert metal. The effective and sound bonding was possible by spark plasma sinter-bonding due to the differences of electric resistance between base metal and liquid insert layer which creates high temperature region. During the isothermal solidification, $Al_2O_3$ particles and solid particles of liquid phase sintered insert metal have shown no growth, while Ni and Fe particles grow rapidly. In this TLP bonding using the MBF-60 and distributed Fe, Ni particles as insert materials, the whole isothermal solidification process was dominated by the growth rate of the solid particles distributed in the interlayer.

The Electromagnetic Properties in Uncoupled funnel-junction with Various Cr Seed Layer (비결합형 터널접합구조에서 Cr 하지층에 따른 전자기적 특성변화)

  • Park, J.W.;Jeon, D.M.;Yoon, S.Y.;Lee, J.Y.;Suh, S.J.
    • Journal of the Korean Magnetics Society
    • /
    • v.13 no.3
    • /
    • pp.91-96
    • /
    • 2003
  • Cross-geometrical Cr/Co/Al-Ox/Co/Ni-Fe tunnel junctions were fabricated by magnetron sputtering. To form an insulating layer, The Al layer was oxidized in an atmosphere of oxygen-argon mixture at low power after deposition. To enhance the coercivity of the bottom Co layer, The Cr seed layer was deposited on the glass and it led to increase in coercivity. The coercivity increase is due to the increase of roughness through the Cr thickness. In over oxidation time, the oxidation of Co bottom layer and flat interface of insulator can increase the bottom Co coercivity. But TMR ratio gradually decrease. TMR ratio is relevant with Cr thickness, insulator thickness, and oxidation time. The maximum TMR ratio was 14% at room temperature and the TMR ratio was decreased to half at 0.51 V.

Physico-mechanical properties and prosthodontic applications of Co-Cr dental alloys: a review of the literature

  • Al Jabbari, Youssef S.
    • The Journal of Advanced Prosthodontics
    • /
    • v.6 no.2
    • /
    • pp.138-145
    • /
    • 2014
  • Cobalt-Chromium (Co-Cr) alloys are classified as predominantly base-metal alloys and are widely known for their biomedical applications in the orthopedic and dental fields. In dentistry, Co-Cr alloys are commonly used for the fabrication of metallic frameworks of removable partial dentures and recently have been used as metallic substructures for the fabrication of porcelain-fused-to-metal restorations and implant frameworks. The increased worldwide interest in utilizing Co-Cr alloys for dental applications is related to their low cost and adequate physico-mechanical properties. Additionally, among base-metal alloys, Co-Cr alloys are used more frequently in many countries to replace Nickel-Chromium (Ni-Cr) alloys. This is mainly due to the increased concern regarding the toxic effects of Ni on the human body when alloys containing Ni are exposed to the oral cavity. This review article describes dental applications, metallurgical characterization, and physico-mechanical properties of Co-Cr alloys and also addresses their clinical and laboratory behavior in relation to those properties.

Micro Structure and Surface Characteristics of NiCr Thin films Prepared by DC Magnetron Sputter according to Annealing Conditions (DC 마그네트론 스퍼터링 NiCr 박막의 열처리 조건에 따른 미세구조 및 표면특성)

  • Kwon, Yong;Kim, Nam-Hoon;Choi, Dong-You;Lee, Woo-Sun;Seo, Yong-Jin;Park, Jin-Seong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.6
    • /
    • pp.554-559
    • /
    • 2005
  • Ni/Cr thin film is very interesting material as thin film resistors, filaments, and humidity sensors because their relatively large resistivity, more resistant to oxidation and a low temperature coefficient of resistance (TCR). These interesting properties of Ni/Cr thin films are dependent upon the preparation conditions including the deposition environment and subsequent annealing treatments. Ni/Cr thin films of 250 nm were deposited by DC magnetron sputtering on $Al_2O_3/Si$ substrate with 2-inch Ni/Cr (80/20) alloy target at room temperature for 45 minutes. Annealing treatments were performed at $400^{\circ}C,\;500^{\circ}C,\;and\;600^{\circ}C$ for 6 hours in air or $H_2$ ambient, respectively. The clear crystal boundaries without crystal growth and the densification were accomplished when the pores were disappeared in air ambient. Most of surface was oxidic including NiO, $Ni_2O_3$ and $Cr_xO_y$(x=1,2, y=2,3) after annealing in air ambient. The crystal growth in $H_2$ ambient was formed and stabilized by combination with each other due to the suppression of oxidized substance on film surface. Most oxidic Ni was restored when the oxidic Cr was present due to its stability in high-temperature $H_2$ ambient.

Effect of the Heat treatment and Boron on the Hot Corrosion Resistance of the Al Diffusion Coating (Al 확산피복층의 고온 내식성에 미치는 후열처리와 B첨가의 영향)

  • 김태원;윤재홍;이재현;김현수;변응선
    • Journal of the Korean institute of surface engineering
    • /
    • v.32 no.1
    • /
    • pp.67-77
    • /
    • 1999
  • The Ni base superalloy Mar-M247 substrate was aluminized or aluminized after boronizing by the pack cementation under Ar atmosphere. The hot corrosion resistance and after-heat-treatment effect of aluminized specimens were studied by the cyclic hot corrosion test in $Na_2SO_4$-NaCl molten salt. XRD analysis showed that the $Ni_2Al_3$ phase was formed between the coated layer and substrate below 1273K but the NiAl phase above 1273K. The peak of the NiAl phase was developed after heat treatment. Corrosion test showed that corrosion resistance of the specimen with the NiAl phase was better than that with the $Ni_2Al_3$ phase. Corrosion resistance could be improved by heat treatment to form ductile NiAl phase, where cracks were not formed by thermal shock on coating layer. Moreover, it appeared that heat treatment played a role to improve corrosion resistance of Al diffusion coating above 1273K. The existence of boron in the Al diffusion coating layer obstructed outwared diffusion of Cr from the substrate, and it influenced on corrosion resistance of the coating layer by weakening adherence of the oxide scale.

  • PDF