• Title/Summary/Keyword: Ni-Cr Alloy

Search Result 455, Processing Time 0.025 seconds

Effect of Distribution and Shape of Cr-Carbide Precipitates on the Caustic stress Corrosion cracking for Ni-Based Alloy 600 (크롬계 탄화물의 분포와 형태가 니켈계 합금 600의 염기응력부식에 미치는 영향)

  • Kim, Seon-Jae;Choe, Jong-Ho;Seong, Jin-Gyeong;Kim, U-Gon;Park, Sun-Dong;Lee, Chang-Gyu;Jeong, Yong-Hwan;Guk, Il-Hyeon
    • Korean Journal of Materials Research
    • /
    • v.8 no.8
    • /
    • pp.766-774
    • /
    • 1998
  • 32$0^{\circ}C$, 40%NaOH 용액의 autoclave에서 약 300wppm의 탄소를 함유하고 있는 15Cr-9Fe-balanced Ni 합금 판상시편에 대해 응력부식 저항성을 조사하였다. 부식시편은 $700^{\circ}C$, 100시간 동안의 열처리로 합금내부에 석출될 수 있는 가능한 한 많은 양의 크롬계 탄화물을 석출시킨 후, 다시 재용해에 의해 크롬계 탄화물의 형태를 조절하는 $800^{\circ}C$-$950^{\circ}C$범위의 최종열처리를 시행하고 급냉시킨 다음 U-자형으로 응력을 가하여 준비되었다. 최종열처리 온도가 올라감에 따라 시편들의 입계응력부식균열(IGSCC ) 전파속도는 $900^{\circ}C$까지는 거의 직선적으로 증가하다가 $950^{\circ}C$에서는 $700^{\circ}C$에서 얻은 값보다도 더 낮게 감소하였다. 즉, 크롬계 탄화물이 재용해되어 그 밀도가 감소함에 따라 IGSCC저항성이 감소하다가 완전히 재용해된 $950^{\circ}C$ 열처리 조건에서 오히겨 가장 큰 IGSCC 저항성을 나타내었다. 이와같은 최조열처리 온도에 따른 니켈계 합금 600의 부식거동은 입계에 존재하는 크롬계탄화물의 형태변화 때문이 아니라 입계에서 탄소-크롬계 탄화물-크롬간의 상평형에 의해 이루어지는 탄소의 입계편석량이 크롬계탄화물이 존재할 때에는 열처리 온도에 따라 증가하다가 그것이 완전히 재용해 되었을 때 가장 낮아지기 때문인 것으로 생각된다.

  • PDF

Surface Properties, Friction, Wear Behaviors of the HOVF Coating of T800 Powder and Tensile Bond Strength of the Coating on Ti64

  • Cho, T.Y.;Yoon, J.H.;Joo, Y.K.;Cho, J.Y.;Zhang, S.H.;Kang, J.H.;Chun, H.G.;Kwon, S.C.
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.11-12
    • /
    • 2008
  • Micron-sized Co-alloy T800 powder was coated on Inconel718 (IN718) using high velocity oxygen fuel (HVOF) thermal spraying by the optimal coating process (OCP) determined from the best surface hardness of 16 coatings prepared by Taguchi program. The surface hardness improved 140-160 % from 399 Hv of IN718 to 560-630 Hv by the coating. Porosity of the coating was 1.0-2.7 %, strongly depending on spray parameters. Both friction coefficients (FC) and wear traces (WT) of the coating were smaller than those of IN718 substrate at both $25^{\circ}C$ and $538^{\circ}C$. FC and WT of IN718 and coating decreased with increasing the surface temperature. Tensile bond strength (TBS) and fracture location (FL) of Ti64/T800 were 8,770 psi and near middle of T800 coating respectively. TBS and FL of Ti64/NiCr/T800 were 8,740 psi and near middle of T800 coating respectively. This showed that cohesion of T800 coating was 8,740-8,770 psi, and adhesion of T800 on Ti64 and NiCr was stronger than the cohesion of T800.

  • PDF

Fabrication of Equiatomic CoCrFeMnNi High-Entropy Alloy by Metal Injection Molding Process Using Coarse-Sized Powders

  • Eun Seong Kim;Jae Man Park;Ji Sun Lee;Jungho Choe;Soung Yeoul Ahn;Sang Guk Jeong;Do Won Lee;Seong Jin Park;Hyoung Seop Kim
    • Journal of Powder Materials
    • /
    • v.30 no.1
    • /
    • pp.1-6
    • /
    • 2023
  • High-entropy alloys (HEAs) are attracting attention because of their excellent properties and functions; however, they are relatively expensive compared with commercial alloys. Therefore, various efforts have been made to reduce the cost of raw materials. In this study, MIM is attempted using coarse equiatomic CoCrFeMnNi HEA powders. The mixing ratio (powder:binder) for HEA feedstock preparation is explored using torque rheometer. The block-shaped green parts are fabricated through a metal injection molding process using feedstock. The thermal debinding conditions are explored by thermogravimetric analysis, and solvent and thermal debinding are performed. It is densified under various sintering conditions considering the melting point of the HEA. The final product, which contains a small amount of non-FCC phase, is manufactured at a sintering temperature of 1250℃.

Characterization of the Manufacturing Process and Mechanical Properties of CoCrFeMnNi High-Entropy Alloys via Metal Injection Molding and Hot Isostatic Pressing

  • Eun Seong Kim;Jae Man Park;Do Won Lee;Hyojeong Ha;Jungho Choe;Jaemin Wang;Seong Jin Park;Byeong-Joo Lee;Hyoung Seop Kim
    • Journal of Powder Materials
    • /
    • v.31 no.3
    • /
    • pp.243-254
    • /
    • 2024
  • High-entropy alloys (HEAs) have been reported to have better properties than conventional materials; however, they are more expensive due to the high cost of their main components. Therefore, research is needed to reduce manufacturing costs. In this study, CoCrFeMnNi HEAs were prepared using metal injection molding (MIM), which is a powder metallurgy process that involves less material waste than machining process. Although the MIM-processed samples were in the face-centered cubic (FCC) phase, porosity remained after sintering at 1200℃, 1250℃, and 1275℃. In this study, the hot isostatic pressing (HIP) process, which considers both temperature (1150℃) and pressure (150 MPa), was adopted to improve the quality of the MIM samples. Although the hardness of the HIP-treated samples decreased slightly and the Mn composition was significantly reduced, the process effectively eliminated many pores that remained after the 1275℃ MIM process. The HIP process can improve the quality of the alloy.

Ferromagnetism of thin films deposited from paramagnetic stainless steel targets by Facing Targets Sputtering

  • Matsushita, N.;Ono, N.;Naoe, M.
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 1991.05a
    • /
    • pp.73-74
    • /
    • 1991
  • The films with ferromagnetic fine particles dispersed in nonmagnetic matrix, such as $Fe-Al_2O_3$ and Fe-Cu have been studied for use of magnetic recording medium, optically device and sensor. Their magnetic properties depend strongly on structural parameter such as size and volume fraction of ferromagnetic particles. Fe-Cr-Ni alloy sputtered films also have microstructure with ferromagnetic -- b.c.c phase and nonmagnetic f.c.c phase grains. Magnetic properties of these films depend strongly on such a unique structure. These are depend on the ratio in volume of ferromagnetic particles to nonmagnetic ones $V_F/V_N$, the saturation magnetization Ms increased with increase of $V_F/V_N$. The coercivity Hc of the as-deposited films took maximum value of about 200 Oe at adequate $V_F/V_N$ and then Ms and Squareness S were 500 emu/cc and 0.5, respectively.(omitted)

  • PDF

The Margin Fit of Nickel-Chromium Metal Alloys used for the Production of Crown and Bridge Prosthetics (치관보철물(齒冠補綴物) 제작(製作)에 사용(使用)되는 Nickel-Chromium계(系) 합금(合金)의 치경부(齒頸部) 변록(邊綠)에 관(關)한 적합성(適合性))

  • Lee, In-Kyu;Choi, Un-Jae
    • Journal of Technologic Dentistry
    • /
    • v.13 no.1
    • /
    • pp.9-13
    • /
    • 1991
  • The purpose of this study was to determine the marginal fit of recasting by used nickel-chromium metal alloys, Hi-Crown, New-Crown and CB-80. Ninety crown prosthetics were divided into eighteen groups according to new to old metal ratios. Each crown was seated on its master die and then the marginal gaps were measured under optical microscope($\times$50). All groups were showed good marginal fit, except group 3 of Hi-Crown(156$\mu$m). The results suggest that the marginal fit of Ni-Cr metal alloy casting bodies were good as without concerned to mixed ratios and metals.

  • PDF

FABRICATION OF GD CONTAINING DUPLEX STAINLESS STEEL SHEET FOR NEUTRON ABSORBING STRUCTURAL MATERIALS

  • Choi, Yong;Moon, Byung M.;Sohn, Dong-Seong
    • Nuclear Engineering and Technology
    • /
    • v.45 no.5
    • /
    • pp.689-694
    • /
    • 2013
  • A duplex stainless steel sheet with 1 wt.% gadolinium was fabricated for a neutron absorbing material with high strength, excellent corrosion resistance, and low cost as well as high neutron absorption capability. The microstructure of the as-cast specimen has typical duplex phases including 31% ferrite and 69% austenite. Main alloy elements like chromium (Cr), nickel (Ni), and gadolinium (Gd) are relatively uniformly distributed in the matrix. Gadolinium rich precipitates were present in the grains and at the grain boundaries. The solution treatment at $1070^{\circ}$ for 50 minutes followed by the hot-rolling above $950^{\circ}$ after keeping the sheet at $1200^{\circ}$ for 1.5 hours are important points of the optimum condition to produce a 6 mm-thick plate without cracking.

Microstructure and Hot Corrosion Resistance of Aluminide and Chromium-Aluminide Coatings for Inconel 600 (Inconel 600에 있어서 Al 및 Al-Cr擴酸浸透 被覆處理에 따른 被覆層의 特性과 耐蝕性)

  • Chung In-Sang;Park, Kyeung-Chae;Park, Soo-Ho
    • Journal of the Korean institute of surface engineering
    • /
    • v.20 no.3
    • /
    • pp.95-105
    • /
    • 1987
  • For the purpose of improving the hot corrosion resistance of Ni-base superalloy, Inconel 600, aluminide and chromium-aluminide coatings by pack cementation process were studied. The morphology of these coatings is dependent on the type of process employed. And their overall composition depends on the composition of the base alloy and on the nature of the cement. Therefore the different aluminide and chromium-aluminide coatings obtained on a superalloy do not possess the same resistance to oxidation and hot corrosion. The mechanisms governing the formation of the coatings and the composition of the coating were varied by pack composition and temperature, and cyclic hot corrosion resistance of the auluminide coating formed by one-step process was inferior to that of the coating formed by two-step process. and Cr-Al composite coating showed good resistance for cyclic hot corrosion.

  • PDF

Plasma Aided Process As Alternative to Hard Chromium Electroplating

  • Kwon, Sik-Chol;Lee, K.H.;Kim, J.K.;Kim, M.;Lee, G.H.;Nam, K.S.;Kim, D.;Chang, D.Y.
    • Journal of the Korean institute of surface engineering
    • /
    • v.36 no.1
    • /
    • pp.48-58
    • /
    • 2003
  • This paper will present an overview of toxicity of hexavalent chromium as well as effort for its replacement by a wide spectrum of alternative materials and technologies. Cr-based materials such as trivalent electrodeposit will be one of strong candidates for hard chromium by surface modification of its surface hardness. Ni-base alloy deposits has proved its application in specific mold for glass. HVOF has been studied in aircraft and military sector. There are still under way of development for commercially available alternatives. To date, no single coating has been identified as universal process as comparable to conventional hard chromium electroplating.

Bond-strength of several metal-meramic alloys and meneered-porcelain (수종 합금의 도재 결합강도)

  • Lee, Kwang-Hoon;Cho, Young-Bum;Chung, Chae-Heon;Kim, Hee-Jung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.49 no.3
    • /
    • pp.191-196
    • /
    • 2011
  • Purpose: In this study, we evaluated the bond-strength between a few metal ceramic-alloys and veneered-porcelain and found if the bond strength of metal-ceramic alloy with lower gold content than the presently used gold alloy was high enough. Materials and methods: For this study, after plasticizing porcelain only for gold alloy, metal specimen was fabricated using Ni-Cr alloy and gold alloy with different gold content. Three point flexural test were performed to measure their bond-strength. Results: The bonding strength of Group 1 to porcelain was $40.62{\pm}3.32$ MPa, which was the highest (P<.05). In sequence of decreasing value, Group 2 (75%) was $37.47{\pm}1.57$ MPa, Group 3 (52%) $35.85{\pm}1.48$ MPa, Group 4 (51.5%) $35.04{\pm}1.34$ MPa, Group 5 (32%) $33.17{\pm}1.62$ MPa, Group 6 (10%) $30.75{\pm}1.21$ MPa. Bonding strength of Group 3 and Group 4 to porcelain did not show statistically significant difference with comparison to that of Group 5 (Duncan's test, P>.05), while there was a significant difference between that of Group 2, Group 3 and Group 4 and that of Group 6 (Duncan's test, P<.05). The bonding strength between gold alloy and porcelain increased according to the content of gold. In all experimental groups showed higher value than 25 MPa, which is the least value recommended by ISO 9693. Conclusion: In all groups, bonding strength was higher than 25 MPa, which is the least value of ISO9693. Therefore, it is considered that metal gold alloy with low gold content is clinically usable.