• Title/Summary/Keyword: Ni thin films

Search Result 414, Processing Time 0.034 seconds

Effects of the Substrate Temperature on the Properties of Ni-Zn-Cu Ferrite Thin Films Deposited by RF Magnetron Sputtering (RF Magnetron Sputtering에 의해 증착된 Ni-Zn-Cu Ferrite 박막의 물성에 미치는 기판온도의 영향)

  • 공선식;조해석;김형준;김경용
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.5
    • /
    • pp.383-390
    • /
    • 1992
  • We investigated the effect of substrate on the properties of the Ni-Zn-Cu ferrite thin films deposited on SiO2 (1000∼3000${\AA}$) / Si (100) substrate at various conditions by rf magnetron sputtering. A disktype Ni-Zn-Cu ferrite sintered by conventional ceramic process and argon gas were used as a target and a sputtering gas, repectively. The compositions of the thin films measured by EPMA were similar to target composition (Fe: 65.8 at%, Ni: 12.7 at%, Cu: 6.7 at%, Zn: 14.8 at%) irrespective of substrate temperature. Amorphous thin films were deposited when substrate was not intentionally heated, but the films came to crystallize with increasing substrate temperature, and crystalline thin films were deposited at substrate temperature above 200$^{\circ}C$. Below 250$^{\circ}C$ saturation magnetization (Ms), remanence (Mr) and coercivity (Hc) of the ferrite thin film increased with the substrate temperature due to the increase of grain size and the improvement of crystallinity. And above 250$^{\circ}C$, Ms, Mr increased slightly, but Hc of the amorphous thin films increased due to crystallization, whereas that of the crystalline thin films decreased because of grain growth and stress release.

  • PDF

Fabrication and Characterization of Ni-Cr Alloy Thin Films for Application to Precision Thin Film Resistors

  • Lee, Boong-Joo;Shin, Paik-Kyun
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.4
    • /
    • pp.525-531
    • /
    • 2007
  • Ni(75 wt.%)-Cr(20 wt.%)-Al(3 wt.%)-Mn(4 wt.%)-Si(1 wt.%) alloy thin films were prepared using the DC magnetron sputtering process by varying the sputtering conditions such as power, pressure, substrate temperature, and post-deposition annealing temperature in order to fabricate a precision thin film resistor. For all the thin film resistors, sheet resistance, temperature coefficient of resistance (TCR), and crystallinity were analyzed and the effects of sputtering conditions on their properties were also investigated. The oxygen content and TCR of Ni-Cr-Al-Mn-Si resistors were decreased by increasing the sputtering pressure. Their sheet resistance, TCR, and crystallinity were enhanced by elevating the substrate temperature. In addition, the annealing of the resistor thin films in air at a temperature higher than $300^{\circ}C$ lead to a remarkable rise in their sheet resistance and TCR. This may be attributed to the improved formation of NiO layer on the surface of the resistor thin film at an elevated temperature.

The Deposition and Characteristics of Ni Thin Films according to Annealing Conditions for the Application of Thermal Flow Sensors

  • Noh, Sang-Soo;Lee, Eung-Ahn;Lee, Sung-Il;Jang, Wen-Teng
    • Transactions on Electrical and Electronic Materials
    • /
    • v.8 no.4
    • /
    • pp.161-165
    • /
    • 2007
  • In this work, Ni thin films with different thickness from $1,523{\AA}\;to\;9,827{\AA}$ were deposited for the application of micro thermal flow sensors by a magnetron sputtering and oxidized through annealing at $450^{\circ}C$ with increasing annealing time. The initial variation of resistivity decreased radically with increasing films thickness, then gradually stabilizes as the thickness increases. The resistivity of Ni thin films with $3,075{\AA}$ increased suddenly with increasing annealing time at $450{\circ}C$, then gradually stabilizes as the thickness increases after the annealing time 9 h. In case of $3,075{\AA}\;and\;9,827{\AA}$ films, the average of TCR values, measured for the operating temperature range of $0^{\circ}C\;to\;180^{\circ}C$, were $2,413.1ppm/^{\circ}C\;and\;4,438.5ppm/^{\circ}C$, respectively. Because of their high resistivity and very linear TCR, Ni oxide thin films are superior to pure Ni and Pt thin films for flow and temperature sensor applications.

The Study on Thermal Stability of NiCr Thin-films Resistor (NiCr 박막 저항계의 열적 안정성에 관한 연구)

  • Kim, I.S.;Jeong, S.J.;Kim, D.H.;Song, J.S.
    • Proceedings of the KIEE Conference
    • /
    • 2001.11a
    • /
    • pp.168-170
    • /
    • 2001
  • The NiCr is an important material for present thin-film resistor application owing to its low TCR and thermal stability. In this work, the NiCr thin films were deposited on corning glass substrate by reactive magnetron sputtering and the annealing at temperatures range from 300 to $500^{\circ}C$ for 20 min in vacuum. X-ray, AFM, $R_s$(surface leakage current) have been used to study the structural and electrical properties of the NiCr thin films. The high precision NiCr thin films resistor with TCR(temperature coefficient of resistance) of less then 10 ppm/$^{\circ}C$ was obtained under in in-situ annealing at $300^{\circ}C$ on Cr buffer layer substrate. It is clear that the NiCr thin-films resistor electrical properties are low TCR related with it's annealing and buffer layer condition. NiCr thin film resistor having a good thermal stability and low TCR properties are expected for the application to the dielectric material of passive component.

  • PDF

The Study on Thermal Stability of NiCr Thin-films (NiCr 박막의 어닐링과 열적안정성에 관한 연구)

  • Kim, I.S.;Min, B.K.;Song, J.S.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.81-84
    • /
    • 2004
  • The NiCr is an important material for present thin-film resistor application owing to its low TCR and thermal stability. In this work, the NiCr thin films were deposited on coming glass substrate by reactive magnetron sputtering and the annealing at temperatures range from 300 to $500^{\circ}C$ for 20 min in vacuum. X-ray, AFM, $R_s$(surface leakage current) have been used to study the structural and electrical properties of the NiCr thin films. The high precision NiCr thin films resistor with TCR(temperature coefficient of resistance) of less then $10\;ppm/^{\circ}C$ was obtained under in in-situ annealing at $300^{\circ}C$ on Cr buffer layer substrate. It is clear that the NiCr thin-films resistor electrical properties are low TCR related with it's annealing and buffer layer condition. NiCr thin film resistor having a good thermal stability and low TCR properties are expected for the application to the dielectric material of passive component.

  • PDF

A study of Nickel Oxide thin film deposited by DC magnetron and RF sputtering method (DC magnetron 방법과 RF 스퍼터링 방법으로 제작된 Nickel Oxide 박막의 특성 연구)

  • Choi, Kwang-Nam;Park, Jun-Woo;Baek, Seoung-Ho;Lee, Ho-Sun;Kwak, Sung-Kwan;Chung, Kwan-Soo
    • Proceedings of the IEEK Conference
    • /
    • 2007.07a
    • /
    • pp.441-442
    • /
    • 2007
  • We deposited nickel oxide(NiO) thin films on silicon(Si) substrates at Room temperature and $500^{\circ}C$ using a nickel target by reactive DC and RF sputtering. In addition, we anneal to NiO thin films deposited at room temperature. Using spectroscopic eillipsometry, we obtained optical characteristics of every films. We discussed relations of the optical and structural properties of NiO thin films with the oxygen flow rate, substrate temperature and annealing temperatures. Refraction was decreased and defect was increased when NiO thin films was annealed. We also analyzed the electrical characteristics of NiO films which deposited DC and RF sputtering method.

  • PDF

Characteristics of NiCr Thin Films Prepared by rf Magnetron Sputtering as Absorption Layer for Infrared Sensors (적외선 센서를 위해 흡수층으로서 rf Magnetron Sputtering에 의해 제조된 NiCr 박막의 특성)

  • Hur, Sung-Gi;Choi, Eun-Suck;Yoon, Soon-Gil
    • Korean Journal of Materials Research
    • /
    • v.13 no.10
    • /
    • pp.640-644
    • /
    • 2003
  • NiCr thin films were fabricated by rf magnetron sputtering for applying to both the top electrode and absorption layer on Pb(Zr, Ti)O$_3$(PZT) thin films for infrared sensors. The rms roughness and resistivity of NiCr films prepared with Ni power of 80 W and Cr power of 50 W showed the most stable oxidation resistance after annealing at $600^{\circ}C$ for 5 min in oxygen ambient. The rms roughness and resistivity of NiCr films annealed at $V^{\circ}C$ in oxygen ambient were about 2$0\AA$ and $70 \mu$Ω-cm, respectively. As-deposited Ni/PZT/Pt and NiCr (Ni 80 W, Cr 50 W)/PZT/Pt structures showed well saturated hysteresis loops. However, in case of the samples annealed at $500^{\circ}C$ in oxygen ambient, only NiCr/PZT/Pt showed saturated loops having a remanent polarization of 20$\mu$C/$\textrm{cm}^2$. Ultra-thin NiCr films showed a possibility as a top electrode for infrared sensors.

Electronic, Optical and Electrical Properties of Nickel Oxide Thin Films Grown by RF Magnetron Sputtering

  • Park, Chanae;Kim, Juhwan;Lee, Kangil;Oh, Suhk Kun;Kang, Hee Jae;Park, Nam Seok
    • Applied Science and Convergence Technology
    • /
    • v.24 no.3
    • /
    • pp.72-76
    • /
    • 2015
  • Nickel oxide (NiO) thin films were grown on soda-lime glass substrates by RF magnetron sputtering method at room temperature (RT), and they were post-annealed at the temperatures of $100^{\circ}C$, $200^{\circ}C$, $300^{\circ}C$ and $400^{\circ}C$ for 30 minutes in vacuum. The electronic structure, optical and electrical properties of NiO thin films were investigated using X-ray photoelectron spectroscopy (XPS), reflection electron energy spectroscopy (REELS), UV-spectrometer and Hall Effect measurements, respectively. XPS results showed that the NiO thin films grown at RT and post annealed at temperatures below $300^{\circ}C$ had the NiO phase, but, at $400^{\circ}C$, the nickel metal phase became dominant. The band gaps of NiO thin films post annealed at temperatures below $300^{\circ}C$ were about 3.7 eV, but that at $400^{\circ}C$ should not be measured clearly because of the dominance of Ni metal phase. The NiO thin films post-annealed at temperatures below $300^{\circ}C$ showed p-type conductivity with low electrical resistivity and high optical transmittance of 80% in the visible light region, but that post-annealed at $400^{\circ}C$ showed n-type semiconductor properties, and the average transmittance in the visible light region was less than 42%. Our results demonstrate that the post-annealing plays a crucial role in enhancing the electrical and optical properties of NiO thin films.

Optical and Electrochemical Properties of LiNiPO4 Thin Film for Transparent Thin Film Lithium Secondary Battery (투명 박막 리튬이차전지를 위한 LiNiPO4 박막의 광학 및 전기화학적 특성)

  • Lee, HyunSeok;Parmar, Narendra S.;Kim, Kwang-Bum;Choi, Ji-Won
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.1
    • /
    • pp.36-39
    • /
    • 2018
  • Transparent olivine $LiNiPO_4$ thin films on sapphire substrates were fabricated by radio frequency (RF) magnetron sputtering. The X-ray diffraction patterns show these thin films have the phase of $LiNiPO_4$ with an ordered olivine structure indexed to the orthorhombic Pmna space group. $LiNiPO_4$ thin films deposited on sapphire substrates exhibit transmittance of about 83 %. It was confirmed that the $LiNiPO_4$ thin film exhibits a high potential of 5 V-class.

A Study on the Electrodeposition of NiFe Alloy Thin Films Using Chronocoulometry and Electrochemical Quartz Crystal Microgravimetry

  • Myeong, No Seung
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.9
    • /
    • pp.994-998
    • /
    • 2001
  • Ni, Fe and NiFe alloy thin films were electrodeposited at a polycrystalline Au surface using a range of electrolytes and potentials. Coulometry and EQCM were used for real-time monitoring of electroplating efficiency of the Ni and Fe. The plating efficiency of NiFe alloy thin films was computed with the aid of ICP spectrometry. In general, plating efficiency increased to a steady value with deposition time. Plating efficiency of Fe was lower than that of Ni at -0.85 and -1.0 V but the efficiency approached to the similar plateau value to that of Ni at more negative potentials. The films with higher content of Fe showed different stripping behavior from the ones with higher content of Ni. Finally, compositional data and real-time plating efficiency are presented for films electrodeposited using a range of electrolytes and potentials.