• Title/Summary/Keyword: Ni electroplating

Search Result 151, Processing Time 0.028 seconds

A Study on the Electrodeposition of NiFe Alloy Thin Films Using Chronocoulometry and Electrochemical Quartz Crystal Microgravimetry

  • Myeong, No Seung
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.9
    • /
    • pp.994-998
    • /
    • 2001
  • Ni, Fe and NiFe alloy thin films were electrodeposited at a polycrystalline Au surface using a range of electrolytes and potentials. Coulometry and EQCM were used for real-time monitoring of electroplating efficiency of the Ni and Fe. The plating efficiency of NiFe alloy thin films was computed with the aid of ICP spectrometry. In general, plating efficiency increased to a steady value with deposition time. Plating efficiency of Fe was lower than that of Ni at -0.85 and -1.0 V but the efficiency approached to the similar plateau value to that of Ni at more negative potentials. The films with higher content of Fe showed different stripping behavior from the ones with higher content of Ni. Finally, compositional data and real-time plating efficiency are presented for films electrodeposited using a range of electrolytes and potentials.

Computational Analysis of Aqueous Solution Stability for Electroformed Fe-Cr-Ni Thin Layer (전산모사를 활용한 Fe-Cr-Ni 전주용 수용액의 안정성 분석)

  • Jeon, Seung-Hwan;Han, Sang-Seon;Kim, Ma-Ro;Choe, Yong;Lee, Sang-Beom
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2014.11a
    • /
    • pp.214-214
    • /
    • 2014
  • Computational analysis of aqueous solution stability of Fe-Cr-Ni system to find an electroplating condition of Fe-Cr-Ni layer. Aqueous sulfate solution with iron, chromium and nickel ions was selected by using a numerical S/W with which aqueous solution stability was analyzed. Several possible conditions to perform electro-forming of Fe-Cr-Ni were selected with thermo-dynamical data. The Fe-Cr-Ni system was electro-formed which composition and microstructure of the electroplated Fe-Cr-Ni significantly depended on the solution temperature and electro-potential. The final composition of Fe-3%Cr-48%Ni with less than $30{\mu}m$ thick was well electroplated.

  • PDF

Fabrication Method of Ni Based Under Bump Metallurgy and Sn-Ag Solder Bump by Electroplating (전해도금을 이용한 Ni계 UBM 및 Sn-Ag 솔더 범프 형성방법)

  • Kim, Jong-Yeon;Kim, Su-Hyeon;Yu, Jin
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2002.11a
    • /
    • pp.33-37
    • /
    • 2002
  • 본 연구에서는 전해도금법을 이용하여 플립칩용 Ni, Ni-Cu 합금 UBM (Under Bump Metallurgy) 및 Sn-Ag 무연 솔더 범프를 형성하였다. 솔더 범프의 전해도금시 고속도금 방법으로 균일한 범프 높이를 갖도록 하는 도금 조건 및 도금 기판의 역할로서의 UBM의 영향을 조사하였다. Cu/Ni-Cu 합금/Cu UBM을 적용한 경우 음극시편의 전극 접점수를 증가시켰을 때 비교적 균일한 솔더 범프를 형성시킬 수 있었던 반면, Ni UBM의 경우는 접점수를 증가시켜도 다소 불균일한 솔더 범프를 형성하였다. 리플로 시간을 변화하여 범프 전단 강도 및 파단 특성을 조사하였는데 Ni UBM의 경우 Cu/Ni-Cu 합금/Cu UBM에 비해 전단강도가 다소 낮은 값을 가졌고 금속막이 웨이퍼에서 분리되는 파괴 거동이 관찰되었다.

  • PDF

Formation of Copper Electroplated Electrode Patterning Using Screen Printing for Silicon Solar Cell Transparent Electrode (실리콘 태양전지 투명전극용 스크린 프린팅을 이용한 구리 도금 전극 패터닝 형성)

  • Kim, Gyeong Min;Cho, Young Joon;Chang, Hyo Sik
    • Korean Journal of Materials Research
    • /
    • v.29 no.4
    • /
    • pp.228-232
    • /
    • 2019
  • Copper electroplating and electrode patterning using a screen printer are applied instead of lithography for heterostructure with intrinsic thin layer(HIT) silicon solar cells. Samples are patterned on an indium tin oxide(ITO) layer using polymer resist printing. After polymer resist patterning, a Ni seed layer is deposited by sputtering. A Cu electrode is electroplated in a Cu bath consisting of $Cu_2SO_4$ and $H_2SO_4$ at a current density of $10mA/cm^2$. Copper electroplating electrodes using a screen printer are successfully implemented to a line width of about $80{\mu}m$. The contact resistance of the copper electrode is $0.89m{\Omega}{\cdot}cm^2$, measured using the transmission line method(TLM), and the sheet resistance of the copper electrode and ITO are $1{\Omega}/{\square}$ and $40{\Omega}/{\square}$, respectively. In this paper, a screen printer is used to form a solar cell electrode pattern, and a copper electrode is formed by electroplating instead of using a silver electrode to fabricate an efficient solar cell electrode at low cost.

Electroforming and Properties of Fe-Ni Alloy Thin Foils (Fe-Ni 합금 극박재 제조를 위한 전주성형기술 및 극박재 특성)

  • Yim T. H.;Lee H. Y.
    • Transactions of Materials Processing
    • /
    • v.14 no.2 s.74
    • /
    • pp.121-125
    • /
    • 2005
  • Electroforming is a process that employs technology similar to that used for electroplating but which is used for manufacturing metallic articles, rather than as a means of producing surface coatings. Electroforming provides a cost-effective means of producing alloys and fully dense nanocrystalline metals as foils, sheets and complex shapes. Fe-Ni nanocrystalline alloy foils with composition in the $36\~80wt\%$ Ni range were fabricated by electroforming. The thickness of electroformed foils was in the range of $5\~30{\mu}m$. TEM and XRD analysis was applied for measuring the grain size. Very fine grain size$(\~10nm)$ was obtained in alloy foils. The yield and tensile strength of electroformed Fe-Ni alloy were 2000-2800 MPa and 2500-3300 MPa respectively. The magnetic permeability at high frequency of electroformed Fe-Ni foil was higher than that of thicker foils.

Electroforming and Properties of Fe-Ni alloy thin foil (Fe-Ni 합금 극박재 제조를 위한 전주성형기술 및 극박재 특성)

  • Yim T. B.;Lee H. Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.188-191
    • /
    • 2004
  • Electroforming is a process that employs technology similar to that used for electroplating but which is used for manufacturing metallic articles, rather than as a means of producing surface coatings. Electroforming provides a cost-effective means of producing alloys and fully dense nanocrystalline metals as foils, sheets and complex shapes. It was able to make Fe-Ni foil with $5{\mu}m$ thickness by electroforming. Electroformed Fe-Ni alloy was nanocrystalline and the yield strength was in the range $2000{\sim}2800\;MPa$. The magnetic permeability at high frequency of electroformed Fe-Ni foil was higher than that of thicker foils.

  • PDF

Toxic Gas Removal Behaviors of Porous Carbons in the Presence of Ag/Ni Bimetallic Clusters

  • Kim, Byung-Joo;Park, Hoon;Park, Soo-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.4
    • /
    • pp.782-784
    • /
    • 2008
  • Ag/Ni bimetallic cluster loading on porous carbon fibers was accomplished in order to enhance the HCl removal efficiency of the carbons. The surface properties of the Ag/Ni/carbons were determined by XRD and SEM. N2/77 K adsorption isotherms were investigated using BET and Boers t-plot methods. The HCl removal efficiency was confirmed by a gas chromatography technique, and it was found that that efficiency was predominantly improved in the presence of Ag/Ni clusters compared with the efficiencies of the as-received and single-metal-plated carbons. This indicates that synergetic reactions exist between Ag/Ni and HCl gas, resulting in advanced HCl removal capacity of porous carbons.

Ni Plating Technology for PWR Reactor Vessel Cladding Repair

  • Hwang, Seong Sik;Kim, Dong Jin
    • Corrosion Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.190-195
    • /
    • 2019
  • SA508 low-alloy steel for a reactor vessel was exposed to primary water in a pressurized water reactor (PWR) plant because the cladding layer of type 309 stainless steel for the RPV was removed, due to an accident in which the detachment of the thermal sleeve occurred. The major advantage of the electrochemical deposition (ECD) Ni plating technique is that the reactor pressure vessel can be repaired without significant thermal effects, and Ni has solid corrosion resistance that can withstand boric acid. The corrosion rate assessment of the damaged part was performed, and its trend was analyzed. Essential variables of the Ni plating for repair of the damaged part were derived. These conditions are applicable variables for the repair plating device, and have been carefully adjusted using the repair plating device. The process for establishing ASME technical standards called Code Case N-840 is described. The process of developing Ni-plating devices, and the electroplating procedure specification (EPS) are described.

The Study on Development of Plating Technique on Electroless Ni/Au (무전해 니켈/금도금 기술 개발에 관한 연구)

  • Park Soo-Gil;Park Jong-Eun;Jung Seung-Jun;Yum Jae-Suk;Jun Sae-ho;Lee Ju-Seong
    • Journal of the Korean Electrochemical Society
    • /
    • v.2 no.3
    • /
    • pp.138-143
    • /
    • 1999
  • Recently, miniaturization of large scale integrated circuits (LSI) and printed circuit board (PCB) have become essential with the downsizing of electronic devices. Gold electroplating is applied of conductivity wiring or terminals for improvement of conductivity and corrosion resistance. However, electroplating is not applicable since the circuits are becoming finer and denser. Accordingly, electroless plating is recently highly attractive method because of the simplicity of the operation requiring no external source of current and no elaborate equipment. In this work, we tried to develop a plating technique on electroless Ni/Au plating. First, the electroless Ni plating was deposited on the PCB with agitation in the bath at $85^{\circ}C$. Then the Au layer was deposited on the Ni layer surface by same method at $90^{\circ}C$. The bonderability were tested in order to evaluate the stability of the electroless Ni/Au by gold wire or solder ball test.

Texture Formation of Eletroplated Nickel and Nickel Alloy on Cu Substrate (구리 기판에 전착시킨 니켈과 니켈합금의 집합조직 형성)

  • Kim, Jae-Geun;Lee, Sun-Wang;Kim, Ho-Jin;Hong, Gye-Won;Lee, Hee-Gyoun
    • Progress in Superconductivity
    • /
    • v.7 no.2
    • /
    • pp.145-151
    • /
    • 2006
  • Nickel and nickel-tungsten alloy were electroplated on a cold rolled and heat treated copper(Cu) substrate. 4 mm-thick high purity commercial grade Cu was rolled to various thicknesses of 50, 70, 100 and 150 micron. High reduction ratio of 30% was applied down to 150 micron. Rolled texture was converted into cube texture via high temperature heat treatment at $400-800^{\circ}C$. Grain size of Cu was about 50 micron which is much smaller compared to >300 micron for the Cu prepared using smaller reduction pass of 5%. 1.5 km-long 150 micron Cu was fabricated with a rolling speed of 33 m/min and texture of Cu was uniform along length. Abnormal grain growth and non-cube texture appeared for the specimen anneal above $900^{\circ}C$. 1-10 micron thick Ni and Ni-W film was electroplated onto an annealed cube-textured Cu or directly on a cold rolled Cu. Both specimens were annealed and the degree of texture was measured. For electroplating of Ni on annealed Cu, Ni layer duplicated the cube-texture of Cu substrate and the FWHM of in plane XRD measurement for annealed Cu layer and electroplated layer was $9.9^{\circ}\;and\;13.4^{\irc}$, respectively. But the FWHM of in plane XRD measurement of the specimen which electroplated Ni directly on cold rolled Cu was $8.6^{\circ}$, which is better texture than that of nickel electroplated on annealed Cu and it might be caused by the suppression of secondary recrystallization and abnormal grain growth of Cu at high temperature above $900^{\circ}C$ by electroplated nickel.

  • PDF