• Title/Summary/Keyword: Ni based catalyst

Search Result 110, Processing Time 0.03 seconds

A Study on Ammonia Formation with Nitrogen Impurity at a Natural Gas Steam Reforming Catalytic Process (소량의 질소를 포함한 천연가스 수증기 개질 반응에서 GHSV 변화에 따른 암모니아 생성 반응에 관한 연구)

  • KIM, CHUL-MIN;PARK, SANG-HYOUN;LEE, JUHAN;LEE, SANGYONG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.6
    • /
    • pp.601-607
    • /
    • 2019
  • Ammonia would be formed in natural gas containing small amount of nitrogen reforming process in the process natural gas, which might damage the Pt catalyst and Prox catalyst. In the article, the effect of nitrogen contents on the formation of ammonia in the reforming process has been studied. In the experiments, Ru based and Ni based catalysts were used and the concentration of ammonia in the reformate gas at various gas hourly space velocity was measured. Experimental result shows that relatively higher ammonia concentration was measured with Ru based catalyst than with Ni based catalyst. It also shows that the concentration of ammonia increased rapidly after most of the methane converted into hydrogen. Based on the experimental results to reduce ammonia concentration it might be better to finish methane conversion at the exit position of the reforming reactor to minimize the contact time of catalyst and nitrogen with high concentration of hydrogen.

A Study on the Reaction Characteristics of Steam Reforming Reaction over Catalyzed Porous Membrane (다공성 촉매 분리막을 이용한 수증기 개질 반응 특성 연구)

  • Hong, Sung Chang;Lee, Sang Moon
    • Applied Chemistry for Engineering
    • /
    • v.25 no.2
    • /
    • pp.198-203
    • /
    • 2014
  • In this study, steam reforming reaction and surface characteristics of Ni metal foam plate were investigated. Valence state of Ni could be changed by pretreatment, and metallic Ni species exposed on surface as a active site play important role in steam reforming reaction. Porous catalytic membrane also was prepared by mixing of Ni metal foam plate and Ni-YSZ catalyst to control the pore size and assign the catalytic function in Ni metal foam plate. In SEM analysis results, Pore size of Ni metal foam plate could be controlled and Ni-YSZ catalyst well dispersed on surface. Ni based porous catalytic membrane had a similar steam reforming activity regardless of space velocity.

Thermal Durability Characteristics of Precious Metal(Pt) and Additives for a Catalytic Combustor (촉매연소기용 귀금속 촉매와 조촉매의 열적 내구특성 연구)

  • Choi, Byungchul;Ko, Byeongwoon;Kim, Myeonghwan;Sin, Hyeok
    • Journal of Institute of Convergence Technology
    • /
    • v.10 no.1
    • /
    • pp.19-24
    • /
    • 2020
  • The purpose of the study is to investigate the thermal durability characteristics of the Pt catalyst and additives used in a catalytic combustor. The catalyst used in the experiment was based on Pt (3 wt%), and a total of 12 types were prepared using a combination of additives (Ni, La, Ce, Fe, and Co). From the results, In the fresh state, the two types of combination catalysts with the highest C3H8 conversion were Pt_Ce (79.9%) at 500℃, and in the three types of combination catalysts, Pt_La_Ni (93.4%) at 500℃ had the best performance. Among aged catalysts at 850℃ and 8 hours, Pt-La-Ni and Pt-Ni-Ce catalysts showed the highest C3H8 conversion of about 71% at 500℃.

Development of Ni-based Catalyst for Hydrogen Production with Steam Reforming of Light Hydrocarbon (저급탄화수소 수증기 개질에 의한 수소 제조용 니켈계 촉매개발)

  • Kim, Dae-Hyun;Awate, Shobhana;Gang, Jeong-Sik;Lee, Byung-Gwon;Choi, Jae-Suk;Kim, Myung-Jun;Hong, Suk-In;Moon, Dong-Ju
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.387-390
    • /
    • 2008
  • Ni/MgAl 촉매상에서 LPG의 수증기 개질반응을 반응온도 $700{\sim}800^{\circ}C$, 공간속도 $20,000h^{-1}$, 수증기/탄소 비율 $1.0{\sim}3.0$인 조건으로 대기압하에서 수행하였다. 본 연구에서 사용된 촉매들은 공침법으로 제조하였으며, 하이드로탈사이트 구조에서 Ni-MgO 구조로 변환되는 과정에서 활성금속인 니켈이 고분산되는 장점을 지니고 있다. 제조된 촉매는 함침법으로 제조된 촉매보다 활성이 잘 유지되었으며 탄소침적에 대한 내구성 또한 향상되었으나 완벽하게 해결되지는 못하였다. 따라서 이와 같은 문제점을 해결하기 위해 귀금속이 modified된 Ni/MgAl 촉매를 제조하고 반응 특성을 비교하였다. Rh-Ni/MgAl 촉매는 LPG 수증기 개질 반응에서 1024시간동안 활성이 유지됨을 확인하였을 뿐만 아니라 탄소침적 또한 발생하지 않음을 확인하였다.

  • PDF

A Study on the Sulfur-Resistant Catalysts for Water Gas Shift Reaction III. Modification of $Mo/γ-Al_2O_3$ Catalyst with Iron Group Metals

  • Park, Jin Nam;Kim, Jae Hyeon;Lee, Ho In
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.12
    • /
    • pp.1233-1238
    • /
    • 2000
  • $Mo/{\gamma}-Al_2O_3catalysts$ modified with Fe, Co, and Ni were prepared by impregnation method and catalytic activity for water gas shift reaction was examined. The optimum amount of Mo loaded for the reaction was 10 wt% $MoO_3$ to ${\gamma}-Al_2O_3.$ The catalytic activity of $MoO_3/{\gamma}-Al_2O_3was$ increased by modifying with Fe, Co, and Ni in the order of Co${\thickapprox}$ Ni > Fe. The optimum amounts of Co and Ni added were 3 wt% based on CoO and NiO to 10 wt% $MoO_3/{\gamma}-Al_2O_3$, restectively. The TPR (temperature-programmed reduction) analysis revealed that the addition of Co and Ni enganced the reducibility of the catalysts. The results of both catalytic activity and TPR experiments strongly suggest that the redox property of the catalyst is an important factor in water gas shift reaction on the sulfided Mo catalysts, which could be an evidence of oxy-sulfide redox mechanism.

Autoxidation Core@Anti-Oxidation Shell Structure as a Catalyst Support for Oxygen Reduction Reaction in Proton Exchange Membrane Fuel Cell

  • Heo, Yong-Kang;Lee, Seung-Hyo
    • Corrosion Science and Technology
    • /
    • v.21 no.5
    • /
    • pp.412-417
    • /
    • 2022
  • Proton exchange membrane fuel cells (PEMFCs) provide zero emission power sources for electric vehicles and portable electronic devices. Although significant progresses for the widespread application of electrochemical energy technology have been achieved, some drawbacks such as catalytic activity, durability, and high cost of catalysts still remain. Pt-based catalysts are regarded as the most efficient catalysts for sluggish kinetics of oxygen reduction reaction (ORR). However, their prohibitive cost limits the commercialization of PEMFCs. Therefore, we proposed a NiCo@Au core shell structure as Pt-free ORR electrocatalyst in PEMFCs. NiCo alloy was synthesized as core to introduce ionization tendency and autoxidation reaction. Au as a shell was synthesized to prevent oxidation of core NiCo and increase catalytic activity for ORR. Herein, we report the synthesis, characterization, electrochemical properties, and PEMFCs performance of the novel NiCo@Au core-shell as a catalyst for ORR in PEMFCs application. Based on results of this study, possible mechanism for catalytic of autoxidation core@anti-oxidation shell in PEMFCs is suggested.

Mid-Temperature Operation Characteristics of Commercial Reforming Catalysts: Comparison of Ru-Based and Ni-Based Catalyst (상용 개질촉매의 중온 영역 운전 특성: Ru 촉매와 Ni 촉매 비교)

  • KIM, YOUNGSANG;LEE, KANGHUN;LEE, DONGKEUN;LEE, YOUNGDUK;AHN, KOOKYOUNG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.32 no.3
    • /
    • pp.149-155
    • /
    • 2021
  • Most of the reformer experiments have been conducted only in high-temperature operation conditions above 700℃. However, to design high efficiency solid oxide fuel cell, it is necessary to test actual reaction performance in mid-temperature (550℃) operation areas. In order to study the operation characteristics and performance of commercial reforming catalysts, a reforming performance experiment was conducted on mid-temperature. The catalysts used in this study are Ni-based FCR-4 and Ru-based RuA, RuAL. Experiments were conducted with a Steam-to-carbon ratio of 2.0 to 3.0 under gas hourly space velocity (GHSV) 2,000 to 5,000 hr-1. As a result, RuA and RuAL catalysts showed similar gas composition to the equilibrium regardless of the reforming temperature. However, the FCR-4 catalyst showed a lower hydrogen yield compared to the equilibrium under high GHSV conditions.

Steam Reforming of Tar Produced from Biomass Gasification Using Ni/Ru-X/Al2O3 (X=K or Mn) Catalyst (Ni/Ru-X/Al2O3 (X=K or Mn) 촉매를 이용한 바이오매스 가스화 타르의 수증기개질)

  • Oh, Gunung;Park, Seo Yoon;Lee, Jae-Goo;Kim, Yong Ku;Ra, Ho Won;Seo, Myung Won;Yoon, Sang Jun
    • Clean Technology
    • /
    • v.22 no.1
    • /
    • pp.53-61
    • /
    • 2016
  • Steam reforming of tar produced from biomass gasification was conducted using several Ni-based catalysts. In labscale, the catalytic steam reforming of toluene which is a major component of biomass tar was studied. A fixed bed reactor was used at various temperatures of 400-800 ℃. Ru (0.6 wt%) and Mn or K (1 wt%) were applied as a promoter in Ni based catalysts. Generally, Ni/Ru-K/Al2O3 catalyst shows higher performance on steam reforming of toluene than Ni/Ru-Mn/Al2O3 catalyst. Used catalysts were analyzed by XRD and TGA to detect sintering and carbon deposition. Base on the lab-scale studies, the monolith and pellet type catalysts were tested in 1 ton/day scale biomass gasification system. Ni/Ru-K/Al2O3 monolith catalyst shows high tar reforming performance at high temperature. In addition, Ni/Ru-Mn/Al2O3 monolith catalyst was showed deactivation with operation time. Reforming performance of Ni/Ru-K/Al2O3 pellet catalyst which showed 66.7% tar conversion at 587 ℃ was compared to regenerated one. Overall, Ni/Ru-K/Al2O3 pellet catalyst shows higher stability and performance than other used catalysts.

Pattern Formation of Highly Ordered Sub-20 nm Pt Cross-Bar on Ni Thin Film (Ni 박막 위 20 nm급 고정렬 Pt 크로스-바 구조물의 형성 방법)

  • Park, Tae Wan;Jung, Hyunsung;Cho, Young-Rae;Lee, Jung Woo;Park, Woon Ik
    • Korean Journal of Metals and Materials
    • /
    • v.56 no.12
    • /
    • pp.910-914
    • /
    • 2018
  • Since catalyst technology is one of the promising technologies to improve the working performance of next generation energy and electronic devices, many efforts have been made to develop various catalysts with high efficiency at a low cost. However, there are remaining challenges to be resolved in order to use the suggested catalytic materials, such as platinum (Pt), gold (Au), and palladium (Pd), due to their poor cost-effectiveness for device applications. In this study, to overcome these challenges, we suggest a useful method to increase the surface area of a noble metal catalyst material, resulting in a reduction of the total amount of catalyst usage. By employing block copolymer (BCP) self-assembly and nano-transfer printing (n-TP) processes, we successfully fabricated sub-20 nm Pt line and cross-bar patterns. Furthermore, we obtained a highly ordered Pt cross-bar pattern on a Ni thin film and a Pt-embedded Ni thin film, which can be used as hetero hybrid alloy catalyst structure. For a detailed analysis of the hybrid catalytic material, we used scanning electron microscope (SEM), transmission electron microscope (TEM) and energy-dispersive X-ray spectroscopy (EDS), which revealed a well-defined nanoporous Pt nanostructure on the Ni thin film. Based on these results, we expect that the successful hybridization of various catalytic nanostructures can be extended to other material systems and devices in the near future.

Ni Nanoparticles Supported on MIL-101 as a Potential Catalyst for Urea Oxidation in Direct Urea Fuel Cells

  • Tran, Ngan Thao Quynh;Gil, Hyo Sun;Das, Gautam;Kim, Bo Hyun;Yoon, Hyon Hee
    • Korean Chemical Engineering Research
    • /
    • v.57 no.3
    • /
    • pp.387-391
    • /
    • 2019
  • A highly porous Ni@MIL-101catalyst for urea oxidation was synthesized by anchoring Ni into a Cr-based metal-organic framework, MIL-101, particles. The morphology, structure, and composition of as synthesized Ni@MIL-101 catalysts were characterized by X-Ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, and transmission electron microscopy. The electro-catalytic activity of the Ni@MIL-101catalysts towards urea oxidation was investigated using cyclic voltammetry. It was found that the structure of Ni@MIL-101 retained that of the parent MIL-101, featuring a high BET surface area of $916m^2g^{-1}$, and thus excellent electro-catalytic activity for urea oxidation. A $urea/H_2O_2$ fuel cell with Ni@MIL-101 as anode material exhibited an excellent performance with maximum power density of $8.7mWcm^{-2}$ with an open circuit voltage of 0.7 V. Thus, this work shows that the highly porous three-dimensional Ni@MIL-101 catalysts can be used for urea oxidation and as an efficient anode material for urea fuel cells.