• Title/Summary/Keyword: Ni analysis

검색결과 1,745건 처리시간 0.024초

SOFC 음극용 Ni-YSZ 복합체의 미세구조와 전기적 물성간의 상관관계 : I. 미세구조 분석 (Correlatin between the Microstructure and the Electrical Conductivity of SOFC anode, Ni-YSZ : I. Microstructure Analysis)

  • 문환;이해원;이종호;윤기현
    • 한국세라믹학회지
    • /
    • 제37권5호
    • /
    • pp.479-490
    • /
    • 2000
  • The microstructure of Ni-YSZ composite as an anode of SOFC was investigated as a function of Ni content(10-70 vol%) in order to examine the correlation between microstructural-and electrical property. Image analysis based on quantitative microscopy theory was performed to quantify the microstructural property. We could get the informations about the size and distribution, contiguity and interfacial area of each phase or between the phases from the image analysis. According to the image analysis, contiguity between the same phae was mainly dependent on the amount of the phase while the contiguity between different phases was additionally influenced by the microstructural changes, especailly by the coarsening of the Ni phase. The whole length of pores perimeter was increased as Ni content increased, which indicated the overall microstructural evolution was mostly related with the coarsening of Ni phase. Ni-Ni interfacial area was also gradually increased as Ni content increased but controlled by pore phase at low Ni content region and by YSZ phase at intermediate Ni content region. These quantified microstructural properties were used to characterize the electrical properties of Ni-YSZ composite.

  • PDF

Nano-CMOS에서 NiSi의 Dopant 의존성 및 열 안정성 개선 (Analysis of Dopant Dependency and Improvement of Thermal stability for Nano CMOS Technology)

  • 배미숙;오순영;지희환;윤장근;황빈봉;박영호;박성형;이희덕
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2003년도 하계종합학술대회 논문집 II
    • /
    • pp.667-670
    • /
    • 2003
  • Ni-silicide has low thermal stabiliy. This point is obstacle to apply NiSi to devices. So In this paper, we have studied for obtain thermal stability and analysis of dopant dependency of NiSi. And then we applied Ni-silicide to devices. To improvement of thermal stability, we deposit Ni70/Co10/Ni30/TiN100 to sample. Co midlayer is enhanced thermal stability of NiSi. Co/Ni/TiN, this structure show very difference between n-poly and p-poly in sheet resistance. But Ni/Co/Ni/TiN, structure show less difference. Also junction leakage is good.

  • PDF

Chemical Poisoning of Ni/MgO Catalyst by Alkali Carbonate Vapor in the Steam Reforming Reaction of DIR-MCFC

  • 문형대;임태훈;이호인
    • Bulletin of the Korean Chemical Society
    • /
    • 제20권12호
    • /
    • pp.1413-1417
    • /
    • 1999
  • Chemical poisoning of Ni/MgO catalyst was induced by hot alkali carbonate vapor in molten carbonate fuel cell (MCFC), and the poisoned (or contaminated) catalyst was characterized by TPR/TPO, FTIR, and XRD analysis. Carbonate electrolytes such as K and Li were transferred to the catalyst during DIR-MCFC operation at 650 ℃. The deposition of alkali species on the catalyst consequently led to physical blocking on catalytic active sites and structural deformation by chemical poisoning. TPR/TPO analysis indicated that K species enhanced the reducibility of NiO thin film over Ni as co-catalyst, and Li species lessened the reducibility of metallic Ni by chemical reaction with MgO. FTIR analysis of the poisoned catalyst did not exhibit the characteristic ${\vector}_1$$(D_{3h})$ peaks (1055 $cm^{-1},\;1085\;cm{-1})$ for pure crystalline carbonates, instead a new peak (1120 $cm^{-1})$ was observed proportionally with deformed alkali carbonates. From XRD analysis, the oxidation of metallic Ni into $Ni_xMg_{1-x}O$ was confirmed by the peak shift of MgO with shrinking of Ni particles. Conclusively, hot alkali species induced both chemical poisoning and physical deposition on Ni/MgO catalyst in DIR-MCFC at 650 ℃.

XPS와 SIMS에 의한 Co-Ni과 Au-Cu 합금표면 정량분석 연구 (Quantitative Surface Analysis of Co-Ni and Au-Cu alloys by XPS and SIMS)

  • 김경중;문대원;이광우
    • 한국진공학회지
    • /
    • 제1권1호
    • /
    • pp.106-114
    • /
    • 1992
  • 여러 조성의 Co-Ni 합금과 Au-Cu 합금에 대하여 XPS와 SIMS 분석방법을 사용하 여 표면분석의 정량화 연구를 수행하였다. XPS의 경우 Co-Ni 합금에 대하여는 수정 없이 고순도 시료만으로 1~2% 상대오차 범위 내에서 정량분석이 가능하였고, Au-Cu 합금의 경 우에는 고순도 시료만을 표준시료로 사용하여서는 정량 분석이 불가능하였고 실험적인 수정 인자를 사용한 경우 1~2% 상대오차로 정량분석이 가능하였다. Au-Cu 합금의 경우 여러 조성이 표준시료가 없는 경우 이론적인 수정인자를 사용하는 경우 10%의 상대오차로 정량 분석이 가능하였다. Co-Ni 합금을 SIMS 분석하였을 때 Co와 Ni의 이차이온 세기의 비가 넓은 농도 범위에서 각 성분의 농도의 비와 직선관계를 가져 SIMS에 의한 합금의 정량분석 이 가능하였다. 또한 VAMAS-SCA Japan Project의 XPS 공동분석의 예비 결과도 주어져 있다.

  • PDF

Hydrogen Absorption by Mg-Ni-Fe2O3 and Mg-Ni-Ti during Mechanical Grinding under Hydrogen

  • Kwak, Young Jun;Park, Hye Ryoung;Song, Myoung Youp
    • 대한금속재료학회지
    • /
    • 제50권11호
    • /
    • pp.855-859
    • /
    • 2012
  • Samples with compositions of 80 wt% Mg-14 wt% Ni-6 wt% $Fe_2O_3$ and 80 wt% Mg-14 wt% Ni-6 wt% Ti were prepared by mechanical grinding under hydrogen (reactive mechanical grinding). Their hydrogen absorptions during reactive mechanical grinding were examined. TGA and BET analysis were employed to investigate the hydrogen storage properties of the prepared alloys. TGA analysis of the $Mg-14Ni-6Fe_2O_3$ showed an absorbed hydrogen quantity of 6.91 wt% while that of Mg-14Ni-6Ti was 2.59 wt%. BET analysis showed that the specific surface areas of $Mg-14Ni-6Fe_2O_3$ and Mg-14Ni-6Ti after reactive mechanical grinding were $264m^2/g$ and $64m^2/g$, respectively. The larger absorbed hydrogen quantity and the larger specific surface area of $Mg-14Ni-6Fe_2O_3$ after RMG than those of Mg-14Ni-6Ti after RMG showed that the effects of $Fe_2O_3$ addition are much stronger than those of Ti addition during reactive mechanical grinding.

치과용 Ni-Ti합금의 표면특성에 미치는 Mo함량의 영향 (Effects of Mo Content on Surface Characteristics of Dental Ni-Ti Alloys)

  • 최한철;김재운;박순균
    • Corrosion Science and Technology
    • /
    • 제22권1호
    • /
    • pp.64-72
    • /
    • 2023
  • Ni-Ti shape memory alloy for dental nerve treatment devices was prepared by adding Mo to Ni-Ti alloy to improve flexibility and fatigue fracture characteristics and simultaneously increase corrosion resistance. Surface properties of the alloy were evaluated. Microstructure analysis of the Ni-Ti-xMo alloy revealed that the amount of needle-like structure increased with increasing Mo content. The shape of the precipitate showed a pattern in which a long needle-like structure gradually disappeared and changed into a small spherical shape. As a result of XRD analysis of the Ni-Ti-xMo alloy, R-phase structure appeared as Mo was added. R-phase and B2 structure were mainly observed. As a result of DSC analysis, phase transformation of the Ti-Ni-Mo alloy showed a two-step phase change of B2-R-B19' transformation with two exothermic peaks and one endothermic peak. As Mo content increased, R-phase formation temperature gradually decreased. As a result of measuring surface hardness of the Ti-Ni-Mo alloy, change in hardness value due to the phase change tended to decrease with increasing Mo content. As a result of the corrosion test, the corrosion potential and pitting potential increased while the current density tended to decrease with increasing Mo content.

Ti 및 Mo 첨가에 따른 치과 CAD/CAM용 Ni-Cr 및 Co-Cr합금의 표면분석 (Surface Analysis of Ni-Cr and Co-Cr Alloys with Addition of Ti and Mo for Dental CAD/CAM Use)

  • 문대선;최한철
    • 한국표면공학회지
    • /
    • 제51권3호
    • /
    • pp.139-148
    • /
    • 2018
  • In this study, surface analysis of Ni-Cr and Co-Cr alloys with addition of Ti and Mo for dental CAD/CAM use has been researched experimentally. The surface characteristics of the alloys were examined by Vickers hardness test, bonding strength test, surface roughness test, field-emission scanning electron microscopy, energy dispersive X-ray spectroscopy, and X-ray diffraction spectroscopy. The shrinkage of the sintered Ni-Cr alloy alloy was slightly larger than that of Ni-Cr-Ti alloy, and larger than Co-Cr alloy. Also, the addition of Mo showed a tendency to decrease shrinkage somewhat. From the result of XRD analysis, NiCr, $Ni_3Cr$ and $Ni_3Ti$ were observed in the sintered Ni-13Cr-xTi and Ni-13Cr-xMo alloys. In addition, ${\sigma}-CrCo$, $Co_2Mo_3$ and $TiCo_2$ were formed in the sintered Co-Cr-xTi and Co-Cr-xMo alloys. Surface hardness of Ti and Mo added alloy was higher than those of Ni-Cr and Co-Cr alloy. The bond strength between sintered alloy and porcelain was $16.1kgf/mm^2$ for Ni-13Cr alloy, $17.8kgf/mm^2$ for Ni-13Cr-5Ti alloy, and $8.2kgf/mm^2$ for Ni-13Cr-10Ti alloy, respectively.

세자리 Schiff Base의 Ni(II) 착물의 분석 (Analysis of Tridentate Schiff Base Ni(II) Complex)

  • 채희남;최용국
    • 분석과학
    • /
    • 제11권5호
    • /
    • pp.332-340
    • /
    • 1998
  • Salicylaldehyde와 2-hydroxy-1-naphthaldehyde를 2-aminophenol과 2-amino-p-cresol에 반응시켜 세자리 Schiff base 리간드($SIPH_2$, $SIPCH_2$, $HNIPH_2$, $HNIPCH_2$)들을 합성하였다. 이들 리간드를 Ni(II) 이온과 반응시켜 세자리 Schiff base Ni(II) 착물들을 합성 하였다. 이들 리간드와 그 착물들의 가상적인 구조와 특성을 원소분석, $^1H$-NMR, IR, UV-vis 분광법과 열 무게 분석법으로 알아보았다. Schiff base 리간드와 Ni(II) 착물의 몰비는 1:1로 결합하며, Ni(II)착물들은 3분자의 수화물이 배위된 6배위의 8면체 구조임을 알았다. 지지 전해질로서 0.1 M TBAP를 포함한 DMSO 용액에서 순환 전압전류법과 미분 펄스 전압전류법으로 세자리 Schiff base 리간드와 이들의 Ni(II) 착물들의 전기 화학적인 산화 환원 과정을 알아보았다. 세자리 Schiff base 리간드들의 전기 화학적 환원은 확산 지배적이고 비가역적으로 진행되었다. Ni(II) 착물의 전기화학적 환원과정은 1단계 1전자 반응으로 확산 지배적이고 준가역적으로 진행되었다. Ni(II) 착물들의 환원전위는 [$Ni(II)(HNIP)(H_2O)_3$]>[$Ni(II)(SIP)(H_2O)_3$]>[$Ni(II)(SIPC)(H_2O)_3$]>[$Ni(II)(HNIPC)(H_2O)_3$]순으로 양전위 방향으로 이동하였으며, 리간드의 영향은 크게 받지 않았다. 이들 결과로 부터 본 연구에서 합성한 Ni(II)착물은 [$Ni(II)(HNIPC)(H_2O)_3$] 착물이 DMSO용매에서 가장 안정함을 알 수 있다.

  • PDF

기계적 합금화한 Ni-W(WC)의 미세구조 및 특성 (Microstructure and Characteristics of Mechanically Alloyed Ni-W(WC))

  • 신수철;장건익
    • 한국재료학회지
    • /
    • 제8권12호
    • /
    • pp.1133-1137
    • /
    • 1998
  • MCFC(Molten Carbonate Fuel Cell) 작동온도인 $650^{\circ}C$에서 Ni 음극의 Creep 및 소결에 대한 저항성을 개선시키고자 Ni-W(WC) 복합재료를 기계적 합금법으로 제조하였다. 기계적 합금화한 분말의 XRD분석결과 밀링시간이 증가함에 따라 재료의 규칙적인 결정이 파괴되어 비정질화 되어가는 경향을 보였다. 소결은 $1280^{\circ}C$의 수소분위기에서 10시간 행하였다 소결된 시편의 dot-mapping 및 TEM 분석결과 Ni-W 계면에서의 2차상 관찰되지 않았으나 $0.1\mu\textrm{m}$ 이하의 W이 Ni 기지내에 미세하고 균일하게 분포되어 있는 것으로 나타났다. 이와같이 미세하고 균일하게 분포되어 있는 W은 고용강화 및 분산강화 효과를 통하여 Ni음극의 기계적 특성을 향상시킬 것으로 기대된다.

  • PDF

Anodic Dissolution Property and Structure of Passive Films on Equiatomic TiNi Intermetallic Compound

  • Lee, Jeong-Ja;Yang, Won-Seog;Hwang, Woon-Suk
    • Corrosion Science and Technology
    • /
    • 제6권6호
    • /
    • pp.311-315
    • /
    • 2007
  • The anodic polarization behavior of equiatomic TiNi shape memory alloy with pure titanium as a reference material was investigated by means of open circuit potential measurement and potentiodynamic polarization technique. And the structure of passive films on TiNi intermetallic compounds was also conducted using AES and ESCA. While the dissolved Ni(II) ion did not affect the dissolution rate and passivation of TiNi alloy, the dissolved Ti(III) ion was oxidated to Ti(IV) ion on passivated TiNi surface at passivation potential. It has also been found that the Ti(IV) ion increases the steady state potential, and passivates TiNi alloy at a limited concentration of Ti(IV) ion. The analysis by AES showed that passive film of TiNi alloy was composed of titanium oxide and nickel oxide, and the content of titanium was three times higher than that of nickel in outer side of passive film. According to the ESCA analysis, the passive film was composed of $TiO_2$ and NiO. It seems reasonable to suppose that NiO could act as unstabilizer to the oxide film and could be dissolved preferentially. Therefore, nickel oxide contained in the passive film may promote the dissolution of the film, and it could be explained the reason of higher pitting susceptibility of TiNi alloy than pure Ti.