DOI QR코드

DOI QR Code

Hydrogen Absorption by Mg-Ni-Fe2O3 and Mg-Ni-Ti during Mechanical Grinding under Hydrogen

  • Kwak, Young Jun (Department of Materials Engineering, Graduate School, Chonbuk National University) ;
  • Park, Hye Ryoung (Faculty of Applied Chemical Engineering, Chonnam National University) ;
  • Song, Myoung Youp (Division of Advanced Materials Engineering, Hydrogen & Fuel Cell Research Center, Engineering Research Institute, Chonbuk National University)
  • Received : 2012.04.03
  • Published : 2012.11.25

Abstract

Samples with compositions of 80 wt% Mg-14 wt% Ni-6 wt% $Fe_2O_3$ and 80 wt% Mg-14 wt% Ni-6 wt% Ti were prepared by mechanical grinding under hydrogen (reactive mechanical grinding). Their hydrogen absorptions during reactive mechanical grinding were examined. TGA and BET analysis were employed to investigate the hydrogen storage properties of the prepared alloys. TGA analysis of the $Mg-14Ni-6Fe_2O_3$ showed an absorbed hydrogen quantity of 6.91 wt% while that of Mg-14Ni-6Ti was 2.59 wt%. BET analysis showed that the specific surface areas of $Mg-14Ni-6Fe_2O_3$ and Mg-14Ni-6Ti after reactive mechanical grinding were $264m^2/g$ and $64m^2/g$, respectively. The larger absorbed hydrogen quantity and the larger specific surface area of $Mg-14Ni-6Fe_2O_3$ after RMG than those of Mg-14Ni-6Ti after RMG showed that the effects of $Fe_2O_3$ addition are much stronger than those of Ti addition during reactive mechanical grinding.

Keywords

References

  1. J. S. Han and K. D. Park, Korean J. Met. Mater. 48, 1123 (2010).
  2. J. J. Reilly and R. H. Wiswall, Inorg. Chem. 6, 2220 (1967).
  3. J. J. Reilly and R. H. Wiswall Jr, Inorg. Chem. 7, 2254 (1968).
  4. E. Akiba, K. Nomura, S. Ono and S. Suda, Int. J. Hydrogen Energy 7, 787 (1982).
  5. M. H. Mintz, Z. Gavra, and Z. Hadari, J. Inorg. Nucl. Chem. 40, 765 (1978).
  6. J. M. Boulet and N. Gerard, J. Less-Common Met. 89, 151 (1983).
  7. M. Lucaci, Al. R. Biris, R. L. Orban, G. B. Sbarcea, and V. Tsakiris, J. Alloys Compd., 488, 163 (2009).
  8. Z. Li, X. Liu, Z. Huang, L. Jiang, S. Wang, Rare Metals 25 (Supplement 1), 247 (2006).
  9. Z. Li, X. Liu, L. Jiang, S. Wang, Int. J. Hydrogen Energy 32, 1869 (2007).
  10. H. C. Zhong, H. Wang, L. Z. Ouyang, and M. Zhu, J. Alloys Compd. 509, 4268 (2011).
  11. P. Pei, X. Song, J. Liu, A. Song, P. Zhang, and G. Chen, Int. J. Hydrogen Energy 37, 984 (2012).
  12. S. Aminorroaya, A. Ranjbar, Y. H. Cho, H. K. Liu, and A. K. Dahle, Int. J. Hydrogen Energy 36, 571 (2011).
  13. Y. H. Cho, S. Aminorroaya, H. K. Liu, and A. K. Dahle, Int. J. Hydrogen Energy 36, 4984 (2011).
  14. C. Milanese, A. Girella, G. Bruni, P. Cofrancesco, V. Berbenni, P. Matteazzi, and A. Marini, Intermetallics 18, 203 (2010).
  15. B. Tanguy, J. L. Soubeyroux, M. Pezat, J. Portier, and P. Hagenmuller, Mater. Res. Bull. 11, 1441 (1976).
  16. F. G. Eisenberg, D. A. Zagnoli, and J. J. Sheridan III, J. Less-Common Met. 74, 323 (1980).
  17. M. Y. Song, J. Mater. Sci. 30, 1343 (1995).
  18. M. Y. Song, E. I. Ivanov, B. Darriet, M. Pezat, and P. Hagenmuller, Int. J. Hydrogen Energy 10, 169 (1985).
  19. M. Y. Song, E. I. Ivanov, B. Darriet, M. Pezat, and P. Hagenmuller, J. Less-Common Met. 131, 71 (1987).
  20. M. Y. Song, Int. J. Hydrogen Energy 20, 221 (1995).
  21. J. L. Bobet, E. Akiba, Y. Nakamura, and B. Darriet, Int. J. Hydrogen Energy 25, 987 (2000).
  22. M. Y. Song, S. N. Kwon, S. H. Hong, and H. R. Park, Met. Mater. Int. 18, 279 (2012).
  23. Y. J. Kwak, H. R. Park, and M. Y. Song, Korean J. Met. Mater. 50, 375 (2012).
  24. M. Y. Song, I. H. Kwon, S. N. Kwon, C. G. Park, S. H. Hong, D. R. Mumm, and J. S. Bae, J. Alloys and Compounds 415, 266 (2006).
  25. S. N. Kwon, M. D. Thesis SN. Improvement of hydriding and dehydriding rates of Mg-based hydrogen storage alloys due to catalytic effects of $Fe_2O_3$ and Ni. Chonbuk National University, Jeonju (2007).