• Title/Summary/Keyword: Ni alloy

Search Result 1,609, Processing Time 0.028 seconds

Development of Large-scale Ni-Al Alloy Fabrication Process at Low Temperature (대용량 저온 Ni-Al 합금 분말 제조 공정 개발)

  • LEE, MIN JAE;KANG, MIN GOO;JANG, SEONG-CHEOL;HAM, HYUNG CHUL;AHN, JOONG WOO;NAM, SUK WOO;YOON, SUNG PIL;HAN, JONGHEE
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.1
    • /
    • pp.64-70
    • /
    • 2018
  • In this study, the kg-class Ni-Al alloy fabrication process at low temperature was developed from the physical mixture of Ni and Al powders. The AlCl3 as an activator was used to reduce the temperature of alloy synthesis below the melting temperature of Ni and Al elements (<$500^{\circ}C$). Mixed phase of Ni3Al intermetallic and Ni-Al solid-solution were identified in the XRD pattern analysis. Furthermore, from the analysis of SEM and particle size analyzer, we found that the particle size of synthesized alloy powders was not changed compared to the initial size of Ni particle after the formation of alloy powder at $500^{\circ}C$. In the creep test, the anode (which was fabricated by the prepared Ni-Al alloy powders in this study) displayed the enhanced creep resistance compared to the conventional anode.

Effect of Hydrogen Concentration on Surface Oxidation Behavior of Alloy 600 in Simulated Primary Water of Pressurized Water Reactor (원전 1차측 수화학 환경에서 수소 농도가 Alloy 600의 표면산화 거동에 미치는 영향)

  • Yun Soo, Lim;Dong Jin, Kim;Sung Woo, Kim;Seong Sik, Hwang;Hong Pyo, Kim;Sung Hwan, Cho
    • Corrosion Science and Technology
    • /
    • v.21 no.6
    • /
    • pp.466-475
    • /
    • 2022
  • Surface oxides and intergranular (IG) oxidation phenomena in Alloy 600 depending on hydrogen concentration were characterized to obtain clear insight into the primary water stress corrosion cracking (PWSCC) behavior upon exposure to pressurized water reactor primary water. When hydrogen concentration was between 5 and 30 cm3 H2/kg H2O, NiFe2O4 and NiO type oxides were found on the surface. NiO type oxides were found inside the oxidized grain boundary when hydrogen concentration was 5 cm3 H2/kg H2O. However, only NiFe2O4 spinel on the surface and Ni enrichment were observed when hydrogen concentration was 30 cm3 H2/kg H2O. These results indicate that the oxidation/reduction reaction of Ni in Alloy 600 depending on hydrogen concentration can considerably affect surface oxidation behavior. It appears that the formation of NiO type oxides in a Ni oxidation state and Ni enrichment in a Ni reduction (or metallic) state are common in primary water. It is believed that the above different oxidation/reduction reactions of Ni in Alloy 600 depending on hydrogen concentration can also significantly affect the resistance to PWSCC of Alloy 600.

Fabrication and Mechanical Properties of Ni-based Amorphous Bulk Alloys (Ni기 비정질 벌크합금의 제조와 기계적 성질)

  • Kim, Sung-Gyoo
    • Journal of Korea Foundry Society
    • /
    • v.22 no.6
    • /
    • pp.288-292
    • /
    • 2002
  • Ni-base amorphous alloys were manufactured using melt-spinning and Cu-mold die casting methods. Amorphous formability, the supercooled liquid region before crystallization and mechanical properties were examined. The reduced glass transition temperature and the supercooled liquid region of $Ni_{51} Nb_{20} Zr_9 Ti_9 Co_8 Cu_3$alloy were 0.621 and 46 K respectively. $Ni_{51} Nb_{20} Zr_9 Ti_9 Co_8 Cu_3$ alloy was produced in the rod shape 3mm diameter using the Cu-mold die casting. Hardness, compression strength, elongation and elastic modulus of the alloy were 850 DPN, 2.75 GPa, 1.8% and 150 GPa respectively. Moreover, compression strength of 2.75 GPa was the highest value in the amorphous bulk alloy produced up to now.

Electronic Structures and Physical Properties of the Ordered and Disordered $Ni_2$MnGa Alloy Films

  • Kim, K. W.;Lee, N. N.;Y. Y. Kudryavtsev;Lee, Y. P.
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.S1
    • /
    • pp.104-106
    • /
    • 2003
  • In this study, the electronic structures and physical properties of Ni$_2$MnGa alloy films and their dependence on the order-disorder structural transitions were investigated. The results show that the ordered films behave nearly the same as the bulk $Ni_2$MnGa alloy, including the martensitic transformation at 200 K. Unexpectedly, the disordering in $Ni_2$MnGa alloy films does not lead to any appreciable magnetic ordering down to 4 K. An annealing of the disordered films restores the ordered structure with an almost full recovery of the magnetic and the transport properties of the ordered $Ni_2$MnGa alloy films. A possible explanation of the disappearance of magnetic moment in the disordered film is given by using the ab initio first-principles electronic-structure calculations.

An experimental study on the marginal fitness of the full cast crown (전부주조금관의 치경부변연의 적합도에 관한 실험적연구)

  • Cho, Sung-Am
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.20 no.1
    • /
    • pp.75-81
    • /
    • 1982
  • The purpose of this study was to compare the marginal fitness between Ni-Cr alloy and type III gold alloy, according to two finishing line, chamfer and shoulder. As experimental materials, author selected type III gold alloy and Ni-Cr alloy (Hicrown) which were popularly used in Korea for the full cast crown. Author prepared the wax patterns with milled stainless steel die and ring. The wax patterns were invested, burnouted, and casted. The maginal discrepancy was measured with scanning electron microscope. Author obtained the following results from this study. 1. The maginal fitness of Type III gold alloy was not significantly different from that of Ni-Cr alloy (Hi-crown). 2. There is no significant difference between chamfer and shoulder in case of Type III gold alloy. 3. The maginal fitness of chamfer type is significantly superior to that of shoulder type in the Ni-Cr alloy (Hi-Crown).

  • PDF

Effect of Hot-forging on NiTi Shape Memory Alloy Fibers Reinforced Mg Alloy Composite

  • Guo, Qi;Li, Gang;Tang, Renjian;Yan, Biao
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.846-847
    • /
    • 2006
  • The composite used in this paper was prepared by hot-pressing ball-milled Mg alloy powders, in which NiTi shape memory alloy fibers in a row were sandwiched. The microstructure and property were examined. It is shown that the composite consisted of a homogenous matrix with uniformly distributed NiTi shape memory alloy fibers, recrystallization took place in the Mg alloy matrix which was subjected to plastic deformation an adequate bonding formed between the matrix and fibers; the density and tensile strength of the composite increased after the hot-forging; the hot-forging process is capable of improving properties of the composite.

  • PDF

Composition, preferred orientation and magnetic properties of Ni-Fe-Co alloy electrodeposits (Ni-Fe-Co 박막도금층의 조성, 우선배향 및 자기적 성질)

  • 예길촌;김선윤;문근호;김용웅
    • Journal of the Korean institute of surface engineering
    • /
    • v.28 no.6
    • /
    • pp.352-360
    • /
    • 1995
  • The effect of electrolysis conditions on the composition, the magnetic properties and the preferred orientation of Ni-Fe-Co alloy deposits was investigated using the sulfate-chloride bath paddle agitated. Cathode current efficiency increases with the current density, showing the different tendency of the variation from that of the Ni-Fe electrodeposits. The Co content of the deposits decreases with increasing current density, while the content of Ni and Fe is shown to be minimum or maximum at 3A/$dm^2$ respectively. The Ni/Fe ratio of the alloy deposits is lower than that of Ni-Fe deposits. The coercive force($H_c$) of the deposits increases with the Co content in deposit, showing the relatively low value in the range of 1.8~5.0Wt.% Co. The anisotropy field ($H_k$) of the deposits is higher than that of Ni-Fe alloy deposits, The preferred orientation of the deposits is generally (200), but the orientation factor(R) changes with both the increase of current density and the magnetic field applied during deposition.

  • PDF

Thermal Properties of Al-Ni-Y Alloy Amorphous Ribbons and High Temperature Deformation Behavior of Al-Ni-Y Alloy Extrudates Fabricated with Amorphous Ribbons (Al-Ni-Y 합금 비정질 리본의 열적 특성 및 리본 압출재의 고온변형 특성)

  • Ko, Byung-Chul;Yoo, Yeon-Chul
    • Transactions of Materials Processing
    • /
    • v.7 no.4
    • /
    • pp.333-339
    • /
    • 1998
  • Hot torsion tests were conducted to investigate the high temperature deformation behavior of $Al_{85}Ni_{10}Y_5$ alloy extrudates fabricated with amorphous ribbons. The powder metallurgy routes, hot pressing and hot extrusion were used to fabricate the extrudates. Thermal properties of amorphous ribbons with different thickness as a function of aging temperature were studied by thin film x-ray dif-fraction (XRD) and differential scanning calorimetry(DSC). The Al phase crystallite firstly formed in the amorphous ribbons and its crystallization temperature($T_x$)Was ~210${\circ}C$ During the processings of consolidation and extrusion, nano-grained structure(~100 nm) was formed in the Al85Ni10Y5 alloy extrudates. The as-extrudated Al85Ni10Y5 alloy and the $Al_{85}Ni_{10}Y_5$ alloy annealed at 250${\circ}C$ for 1 hour showed a flow curve of DRV(dynamic recovery) during hot deformation at 400-550${\circ}C$. On the other hand, the $Al_{85}Ni_{10}Y_5$ alloy annealed at 400${\circ}C$ for 1 hour showed a flow curve of DRX(dynamic recrys-tallization) during hot deformation at 450-500${\circ}C$. Also the flow stress and flow strain of the $Al_{85}Ni_{10}Y_5$ alloy extrudate annealed at 400${\circ}C$ were higher than those at 250${\circ}C$.

  • PDF

Development of Mg-10wt.%Ni Hydrogen-Storage Alloy by Mechanical Alloying (기계적인 합금에 의한 Mg-10wt.%Ni 수소저장합금의 개발)

  • Song, MyoungYoup
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.9 no.4
    • /
    • pp.143-150
    • /
    • 1998
  • The hydriding and dehydriding properties of a Mg-10wt.%Ni mixture, mechanically-alloyed in order to improve the hydriding and dehydriding kinetics of pure Mg, were investigated. The $Mg_2Ni$ phase develops along with hydriding-dehydriding cycling. The principal effects of mechanical alloying in a planetary mill and hydriding-dehydriding cycling are considered to be the augmentation in the density of defects and the enlargement in the specific surface area. The mechanically-alloyed Mg-10wt.%Ni mixture is activated easily. It has much higher hydriding rate and hydrogen-storage capacity and relatively high dehydriding rate as compared with the pure Mg, the Mg-10wt.%Ni alloy, the Mg-25wt.%Ni alloy and the $Mg_2Ni$ alloy.

  • PDF

Interfacial Reactions of Sn-Ag-Cu solder on Ni-xCu alloy UBMs (Ni-xCu 합금 UBM과 Sn-Ag계 솔더 간의 계면 반응 연구)

  • Han Hun;Yu Jin;Lee Taek Yeong
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2003.11a
    • /
    • pp.84-87
    • /
    • 2003
  • Since Pb-free solder alloys have been used extensively in microelectronic packaging industry, the interaction between UBM (Under Bump Metallurgy) and solder is a critical issue because IMC (Intermetallic Compound) at the interface is critical for the adhesion of mechanical and the electrical contact for flip chip bonding. IMC growth must be fast during the reflow process to form stable IMC. Too fast IMC growth, however, is undesirable because it causes the dewetting of UBM and the unstable mechanical stability of thick IMC. UP to now. Ni and Cu are the most popular UBMs because electroplating is lower cost process than thin film deposition in vacuum for Al/Ni(V)/Cu or phased Cr-Cu. The consumption rate and the growth rate of IMC on Ni are lower than those of Cu. In contrast, the wetting of solder bumps on Cu is better than Ni. In addition, the residual stress of Cu is lower than that of Ni. Therefore, the alloy of Cu and Ni could be used as optimum UBM with both advantages of Ni and Cu. In this paper, the interfacial reactions of Sn-3.5Ag-0.7Cu solder on Ni-xCu alloy UBMs were investigated. The UBMs of Ni-Cu alloy were made on Si wafer. Thin Cr film and Cu film were used as adhesion layer and electroplating seed layer, respectively. And then, the solderable layer, Ni-Cu alloy, was deposited on the seed layer by electroplating. The UBM consumption rate and intermetallic growth on Ni-Cu alloy were studied as a function of time and Cu contents. And the IMCs between solder and UBM were analyzed with SEM, EDS, and TEM.

  • PDF