• Title/Summary/Keyword: Ni Brazing

Search Result 58, Processing Time 0.027 seconds

Morphologies of Brazed NiO-YSZ/316 Stainless Steel Using B-Ni2 Brazing Filler Alloy in a Solid Oxide Fuel Cell System

  • Lee, Sung-Kyu;Kang, Kyoung-Hoon;Hong, Hyun-Seon;Woo, Sang-Kook
    • Journal of Powder Materials
    • /
    • v.18 no.5
    • /
    • pp.430-436
    • /
    • 2011
  • Joining of NiO-YSZ to 316 stainless steel was carried out with B-Ni2 brazing alloy (3 wt% Fe, 4.5 wt% Si, 3.2 wt% B, 7 wt% Cr, Ni-balance, m.p. 971-$999^{\circ}C$) to seal the NiO-YSZ anode/316 stainless steel interconnect structure in a SOFC. In the present research, interfacial (chemical) reactions during brazing at the NiO-YSZ/316 stainless steel interconnect were enhanced by the two processing methods, a) addition of an electroless nickel plate to NiO-YSZ as a coating or b) deposition of titanium layer onto NiO-YSZ by magnetron plasma sputtering method, with process variables and procedures optimized during the pre-processing. Brazing was performed in a cold-wall vacuum furnace at $1080^{\circ}C$. Post-brazing interfacial morphologies between NiO-YSZ and 316 stainless steel were examined by SEM and EDS methods. The results indicate that B-Ni2 brazing filler alloy was fused fully during brazing and continuous interfacial layer formation depended on the method of pre-coating NiO-YSZ. The inter-diffusion of elements was promoted by titanium-deposition: the diffusion reaction thickness of the interfacial area was reduced to less than 5 ${\mu}m$ compared to 100 ${\mu}m$ for electroless nickel-deposited NiO-YSZ cermet.

Effects of Microstructural Change in Joint Interface on Mechanical Properties of Si3N4/S.S316 joint with Ni Buffer layer (Ni buffer layer를 사용한 Si3N4/S.S316 접합체에서 접합계면의 미세구조 변화가 접합체의 기계적 특성에 미치는 영향)

  • 장희석;박상환;권혁보;최성철
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.4
    • /
    • pp.381-387
    • /
    • 2000
  • Si3N4/stainless steel 316 joints with Ni buffer layer were fabricated by direct active brazing method (DIB) using Ag-Cu-Ti brazing alloy only and double brazing method (DOB) using Ag-Cu brazing alloy with Si3N4 pretreated with Ag-Cu-Ti brazing alloy. For the joint brazed by DIB method, Ti was segregated at the Si3N4/brazing alloy interface, but was not enough to form a stable joint interface. In addition, large amounts of Ni-Ti inter-metallic compounds were formed in tehbrazing alloy near the joint interface, which could deplete the contents of Ti involved in the interfacial reaction. However, for the joint brazed by DOB method, segregation of Ti at the joint interface were enough to enhance the formation of stable interfacial reaction products such as TiN and Ti-Si-Ni-N-(Cu) multicompounds, which restricted the formation of Ni-Tio inter-metallic compounds in the brazing alloy during brazing with Ni buffer layer. Fracture strength of Si3N4/S.S 316 joints with Ni buffer layer was much improved by using DOB method rather than DIB method. It could be deduced that the differences of fracture strength of the joint with Ni buffer layer depending on brazing process adapted were directly affected by the formation of stable joint interface and the change in microstructure of the brazing alloy near the joint interface. It was found that fracture strength of Si3N4/S.S 316 joints with Ni buffer layer was gradually reduced as the thickness of interface. It was found that fracture strength of Si3N4/S.S 316 joints with Ni buffer layer was gradually reduced as the thickness of Ni buffer layer in the joint was increased from 0.1 mm to 10 mm. It seems to due to the increased residual stress in the joint as the thickness of Ni buffer layer is increased. The maximum fracture strength of Si3N4/S.S 316 joints with Ni buffer layer was 386 MPa, and the fracture of joint was originated at Si3N4/brazing alloy joint interface and propagated into Si3N4 matrix.

  • PDF

Effect of Brazing Condition on Tensile Properties in Brazing Joints of Inconel-625/Ni-201 Using MBF-30 (MBF-30을 사용한 Inconel-625/Ni-201 브레이징 접합부의 인장성질에 미치는 접합조건의 영향)

  • Yu, Jeong-Woo;Park, Sang-Hyun;Kim, Chang-Su;Kang, Chung-Yun
    • Journal of Welding and Joining
    • /
    • v.30 no.6
    • /
    • pp.106-112
    • /
    • 2012
  • This study was carried out to investigate the effect of bonding temperature and holding time on microstructure and mechanical properties in brazing joints of Ni-base superalloy using MBF-30 (Ni-4.5Si-3.2B [wt.%]). The heating rate was $20^{\circ}C$/min to the bonding temperatures $1050^{\circ}C$, $1070^{\circ}C$, $1090^{\circ}C$ under high vacuum condition. The holding times were 100s, 400s, 900s and 1600s. $Ni_3B$ phases and proeutectic Ni were observed in the interlayer of Ni-201. Then, Ni3B and Ni3Si were found in the middle region of brazing joint. Cr-boride phase appeared in the interlayer of Inconel-625. Tensile strength and elongation were decreased at $1050^{\circ}C$-1600s, $1070^{\circ}C$-900s and $1090^{\circ}C$-400s. After observation the fracture specimens, There was Ni3B which is very brittle phase in the grain boundary of Ni201.

Interfacial Structure of Inconel/$Si_3N_4$ Joint Using Ag-Cu-Ti Brazing Metal (Ag-Cu-Ti Brazing 금속을 이용한 Inconel/$Si_3N_4$ 접합의 계면구조)

  • 정창주;장복기;문종하;강경인
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.12
    • /
    • pp.1421-1425
    • /
    • 1996
  • Sintered Si3N4 and Inconel composed of Ni(58-63%) Cr(21-25%) Al(1-17%) Mn(<1%) fe(balance) were pressurelessly joined by using Ag-Cu-Ti brazing filler metal at 950℃ and 1200℃ under N2 gas atmosphere of 1atm and their interfacial structures were investigated. In case that the reaction temperature was low as 950℃ its interfacial structure was "Inconel metal/Ti-rich phase layer/brazing filler metal layer/Si3N4 " Ti used as reactive metal existed in between inconel steel and brazing metal and moved to the interface of between brazing filler metal nd Si3N4 according as reaction temperature increased up to 1200℃. The interfacial structure of inconel steel-Si3N4 reacted at 1200℃ was ' inconel metal/Ni-rich phase layer containing of Fe. Cr and Si/Cu-rich phase layer containing of Mn and Si/Si3N4 " Cr Mn, Ni and Fe diffused to the interface of between brazing filler metal and Si3N4 and reacted with Si3N4 The most reactive components of ingredients of inconel metal were Cr and Mn. On the other hand Ti added as reactive components to Ag-Cu eutectic segregated into Ni-rich phase layer,.

  • PDF

Study on the interfacial reaction vacuum brazed junction between diamond and Ni-based brazing filler metal (진공 브레이징을 이용한 다이아몬드와 Ni계 페이스트의 계면 거동 연구)

  • Lee, Jang-Hun;Lee, Yeong-Seop;Im, Cheol-Ho;Lee, Ji-Hwan;Song, Min-Seok;Ji, Won-Ho;Ham, Jong-O
    • Proceedings of the KWS Conference
    • /
    • 2005.06a
    • /
    • pp.48-50
    • /
    • 2005
  • Advanced hard materials based on diamond are in common use. In this study our main goal was employed to analyze, the mechanisms for the rich phases and chromium carbide, interface of a diamond grits brazed to a Ni-based brazing filler metal matrix. When Ni-7Cr-3Fe-3B-4Si (wt. %) was utilized as the brazing alloy, an isothermal holding resulted in the various products(Ni-rich/Cr-rich domains, carbide). According to these results, the chemical compounds and chromium carbides products is considered to play an important role in brazing temperature and time. Especially chromium carbide has an influence on brazing junction properties.

  • PDF

Effect of Filler Metal in High Vacuum Brazing of Diamond Tools

  • Song, Min-Seok;An, Sang-Jae;Lee, Sang-Jin;Cheong, Ki-Jeong
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1307-1308
    • /
    • 2006
  • The purpose of this study was to examine the interfacial reaction between diamond grits and Ni-based, Ag-based, brazing filler metal, respectively. The morphology of the interface between diamond grits and Ni-based, filler metal exhibited a very good condition after this heat treatment. Cr-carbide and Ni-rich compounds were detected by XRD analysis in the vicinity of the interface between diamond grits and Ni-based, filler metal after vacuum induction brazing. Chromium carbide is considered to play an important role in the high bonding strength achieved between diamonds grits and the brazing alloy.

  • PDF

Effect of the Alloying Elements in Ag-Cu-Zr-X Brazing Alloy on the Microstructure and the Bond Strength of $Al_2O_3$/Ni-Cr Steel Brazed Joint (알루미나/니켈크롬강 접합체의 미세조직 및 접합강도에 미치는 Ag-Cu-Zr-X 브레이징 합금성분의 영향)

  • Kim, Jong-Heon;Yoo, Yeon-Chul
    • Transactions of Materials Processing
    • /
    • v.7 no.5
    • /
    • pp.465-473
    • /
    • 1998
  • The effect of alloying elements of Ag-Cu-Zr-X brazing alloy on the microstructure and the bond strength of $Al_2O_3/Ni-Cr$ brazed steel joint was investigated. The reaction layer, $ZrO_2$ (a=5.146 ${\AA}$ , b=5.213 ${\AA}$ , c=5.311 ${\AA}$ )was formed at the interface of $Al_2O_3/Ni-Cr$ steel joint by the redox reaction between alumina and Zr. The addition of An and Al to the Ag-Cu-Zr brazing alloy gave rise to changes in the thickness of the reaction product layer and the morphology of the brazement. Sn caused the segregation of Zr was decreased b Al the $ZrO_2$ layer formed at the Ag-Cu-Zr-Al alloy was thinner than that of $ZrO_2$ formed at the Ag-Cu-Zr-An alloy. The fracture shear strength was strongly dependent on the microstructure of the brazement. Brazing with Ag-Cu-Zr-Sn alloy resulted in a better bond strength than with Ag-Cu-Zr or Ag-Cu-Zr-Al alloy.

  • PDF

Influence of Brazing Temperature on Strength and Structure of SUS304 Stainless Steel Brazed System with BNi-2 Filler Metal : Fundamental Study on Brazeability with Ni-Based Filler Metal(II) (BNi-2계 삽입금속에 의한 SUS304 스테인리스강 접합체의 강도와 조직에 미치는 브레이징 온도의 영향 : Ni기 삽입금속에 의한 브레이징 접합성의 기초적 검토(II))

  • Lee, Yong-Won;Kim, Jong-Hoon
    • Korean Journal of Materials Research
    • /
    • v.17 no.3
    • /
    • pp.179-183
    • /
    • 2007
  • A plate heat exchanger (PHE) normally uses vacuum brazing technology for connecting plates and fins. However, the reliability of high temperature brazing, especially with nickel-based filler metals containing boron the formation of brittle intermetallic compounds (IMCs) in brazed joints is of major concern. since they considerably degrade the mechanical properties. This research was examined the vacuum brazing of commercially SUS304 stainless steel with BNi-2 (Ni-Cr-B-Si) filler metal, and discussed to determine the influence of brazing temperatures on the microstructure and mechanical strength of brazed joints. In the metallographic analysis it is observed that considerable large area of Cr-B intermetallic compound phases at the brazing layer and the brazing tensile strength is related to removal of this brittle phase greatly. The mechanical properties of brazing layer could be stabilized through increasing the brazing temperature over $100^{\circ}C$ more than melting temperature of filler metals, and diffusing enough the brittle intermetallic compound formed in the brazing layer to the base metal.

BRAZING CHARACTERISTICS BETWEEN CEMENTED CARBIDES AND STEEL USED BY AG-IN BRAZING FILLER

  • Nakamura, Mitsuru;Itoh, Eiji
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.551-554
    • /
    • 2002
  • As a general rule, the brazing process between cemented carbides and steel used by Silver (Ag) type brazing filler. The composition of Ag type filler were used Ag-Cu-Zn-Cd type filler mainly. But, the demand of Cadmium (Cd)-free in Ag type filler was raised recently. The reason why Cd-free in Ag brazing filler were occupied to vaporize as a CdO$_2$ when brazing process, because of Cd element was almost low boiling point of all Ag type filler elements. And, CdO$_2$ was a very harmful element for the human body. This experiment was developed Cd-freeing on Ag type filler that was used Indium (In) instead of Cd element. In this experiment, there were changed from 0 to 5% In addition in Ag brazing filler and investigated to most effective percentage of Indium. As a result, the change of In addition instead of Cd, there was a very useful element and obtained same property only 3% In added specimens compared to Cd 19% added specimens. These specimens were obtained same or more deflective strength. In this case, there were obtained 70 MPa over strength and wide brazing temperature range 650-800 C. A factor of deflective strength were influenced by composition and the shape of $\beta$ phase and between $\beta$ phase and cemented carbides interface. Indium element presented as $\alpha$ phase and non-effective factor directly, but it's occupied to solid solution hardening as a phase. $\beta$ phase were composed 84-94% Cu-Ni-Zn elements mainly. Especially, the presence of Ni element in interface was a very important factor. Influence of condensed Ni element in interface layer was increased the ductility and strength of brazing layer. Therefore, these 3% In added Ag type filler were caused to obtain a high brazing strength.

  • PDF

Study on the Brazing Characteristics of LTCC/Kovar (LTCC/Kovar 간의 Brazing 특성 연구)

  • Lee, W.S.;Cho, H.M.;Lim, W.;Yoo, C.S.;Lee, Y.S.;Kang, N.K.
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2000.11a
    • /
    • pp.57-57
    • /
    • 2000
  • Brazing characteristics of the LTCC(Low Temperature Co-fired Ceramics)/ Kovar(Fe-Ni-Co alloy) was investigated. Kovar is one of the typical material for the lid of MCM and packages. In case of alumina package, Brazing process is done by higher temperature profile than 800 $^{\circ}C$ and Ag-Cu alloy. But, LTCC has sintering temperature near 850 $^{\circ}C$. So, it is difficult to use the same process as alumina brazing. The adhesion strength of the brazed part is affected by brazing alloy and metallization properties between conductor pattern and LTCC material. We investigated brazing characteristics of the LTCC/Kovar using various brazing alloys(Ag-Cu, Au-Sn) and process conditions. And, we examined the influence of the glass contents in conductor on the brazing characteristics of the LTCC/Kovar.

  • PDF