• Title/Summary/Keyword: Ni/AI

Search Result 69, Processing Time 0.03 seconds

EFFECT OF ADDED Si ON DENSIFICATION OF Ni-AI INTERMETALLIC COATING ON SPHEROIDAL GRAPHITE CAST IRON SUBSTRATES

  • Kim, Tetsuro ata;Keisuke Uenishi;Akira Ikenaga;Kojiro F. Kobayashi
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.726-731
    • /
    • 2002
  • Reaction synthesis is a process to form ceramics, intermetallics and their composites from elemental powder mixture. Application of this process to a surface modification techniques has a possibilities to enable the process at a lower temperature or for a shorter time, although synthesized materials are likely to include voids and unreacted elements. This paper intend to examine the effect of Si addition to the mixture of Al and Ni on the densification of synthesized Ni-Al intermetallic compounds and to evaluate the surface properties of obtained coatings. By the Si addition, exothermic reaction temperature to form Ni-Al intermetallic was lowered to be below the melting point of Al. Si soluted $Al_3$Ni$_2$, $Al_3$Ni and $Al_{6}$Ni$_3$Si were mainly formed in the coating layer when powder mixture was heated to 973K for 300s. Besides, densification was enhanced by increasing hot press pressure, Si additions and heating rate. When the composition of eutectic Al-Si reaches 78%, void ratio of sintered compact reduced to 0.4%. It is caused by higher flowability of Al-Si liquid phase generated and its infiltration into the void. Since the hardness of NiAl(Si) compound (about 600HV) formed in the coating layer is higher than that of Ni-Al compound (about 400HV), coating layer with high density and superior wear property is obtained by hot press using reaction synthesis from Al-Ni-Si powder mixture.

  • PDF

The Effects of Al-Alloying Elements on the Melt Oxidation l. Weight Gain by Oxidation (Al합금의 원소가 용융산화에 미치는 영향(l. 산화에 의한 무게증가))

  • Jo, Chang-Hyeon;Jo, Chang-Hyeon;Kim, Il-Su;Kim, Cheol-Su;Kim, Chang-Uk
    • Korean Journal of Materials Research
    • /
    • v.7 no.7
    • /
    • pp.564-570
    • /
    • 1997
  • 용융산화에 의한 AI$_{2}$O$_{3}$복합재료의 형성에 미치는 합금원소의 영향을 연구하였다. AI-Mg-3Si 합금이 가장 우수한 산화거동을 보였다. 우수한 3원계로 선정된 AI-1Mg-3Si합금에 제 4원소 Sn, Cu, Ni, Zn을 양을 달리하여 각각 첨가하여 산화거동을 살펴보았다. 1273K, 1373K, 1473K, 에서 20시간 각각 산화실험을 한 결과, 1473K에서는 모든 합금계가 우수했으나 1373K, 1273K에서는 산화가 거의 일어나지 않았다.

  • PDF

In situ X-ray Scattering Study on the Oxidation of Ni/Au Ohmic Contact on p-GaN (실시간 X-선 산란을 이용한 p-GaN 위에 Ni/Au 오믹 접촉의 산화과정 연구)

  • Lee Sung-pyo;Chang Hyun-woo;Noh Do-young
    • Journal of the Korean Vacuum Society
    • /
    • v.14 no.3
    • /
    • pp.147-152
    • /
    • 2005
  • The structural evolution of $Ni(400\;\AA)/Au(400\;\AA)$ films on p-type GaN during thermal oxidation in ai. was investigated by in situ x-ray scattering experiments. These results indicate that Ni layer and Au layer intermix during thermal oxidation. Au-rich solid solutions containing the different amount of Ni atoms are formed during oxidation. The Ni atoms in Au-rich solid solution out-diffuse as the oxidation proceeds resulting in the formation of NiO(111) phase. Despite of the complete oxidation at $650^{\circ}C$, the position of bulk Au(111) diffraction profile indicates that small amount of Wi atoms are still incorporated in the Au phase.

A Study on the Improvement of Fatigue Strength in Particulate Reinforced Metal Matrix Composites at Elevated Temperatures (입자강화 금속기 복합재료의 고온 피로강도 향상에 관한 연구)

  • Sin, Hyeong-Seop
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.5 s.176
    • /
    • pp.1146-1154
    • /
    • 2000
  • Fatigue strength of NiAl and Ni$_3$Al particulate reinforced aluminum alloy composites fabricated by the diecasting method was examined at room and elevated temperatures. The results were compared wit h that of SiC particulate reinforced one. The particulate reinforced composites showed some improvement in the static and fatigue strength at elevated temperatures when compared with that of Al alloy. The composites reinforced by intermetallic compound particles showed good fatigue strengths at elevated temperatures especially $Ni_3AI_{p}/Al$ alloy composite showed good fatigue limit up to high temperature of 30$0^{\circ}C$. Adopting intermetallic compound particle as a reinforcement phase, it will be possible to develop MMC representing better fatigue property at elevated temperature.

Characteristics and unit cell fabrication of molten carbonate fuel cell (용융탄산염형 연료전지의 단위전지 제작과 특성)

  • 엄승욱;김귀열
    • Electrical & Electronic Materials
    • /
    • v.8 no.6
    • /
    • pp.768-773
    • /
    • 1995
  • We describe a manufacturing method and characteristics on components of molten carbonate fuel cell. Cr, Al, AI$_{2}$O$_{3}$, Co, MgO powder were mixed with Ni powder for anode components and NiO was used for cathode electrode. The electrolyte plate consisted of LiAIO$_{2}$ and carbonate (Li$_{2}$CO$_{3}$/K$_{2}$CO$_{3}$=62/38) and these three were manufactured by doctor-blade method. As a result, open circuit voltage was 1.05[VI at Ni-10Cr anode and porosity was above 60[%].

  • PDF

$Ni/\gamma -Al_2O_3$ Catalyst Prepared by Liquid Phase Oxidation for Carbon Dioxide Reforming of Methane

  • 정경수;조병율;이호인
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.1
    • /
    • pp.89-94
    • /
    • 1999
  • Carbon dioxide reforming of methane on Ni/γ-Al2O3 catalyst was studied. A new 10 wt% Ni/γ-Al2O3 catalyst prepared by the liquid phase oxidation method (L10O) exhibited much higher activity as well as resistances to both sintering and coke formation during the reaction than the catalyst prepared by the conventional impregnation method (D10). The electrically strong attractive interaction between nickel and support during the liquid phase oxidation process and the resultant high nickel dispersion made the L10 have superior activity and stability to the D10. To elucidate the results, the experiments with nickel catalysts on the other supports as well as 7-AI203 were performed. The effect of sodium as a promoter was also studied.

The Effect of LiBr Concentration on Corrosion of Absorption Refrigeration Systems Using $LiBr-H_2O$ Working Fluids ($LiBr-H_2O$계 흡수식냉동기의 부식에 미치는 LiBr 농도의 영향)

  • Lim Uh Joh;Jeong Ki Cheol
    • Journal of the Korean Institute of Gas
    • /
    • v.5 no.4 s.16
    • /
    • pp.33-39
    • /
    • 2001
  • This paper was studied on corrosion behavior of absorption refrigeration systems using $LiBr-H_2O$ working fluids. In the various concentration of lithium bromide solution, polarization test of SS 400, Cu(C1220T-OL) and Al-Ni bronze is carried out. And the corrosion behavior of materials forming absorption refrigeration systems is investigated. The main results are as following: 1) As concentration of lithium bromide solution increases, polarization resistance of materials of each kinds is low. And open circuit potential becomes less noble, the corrosion current density is high drained 2) Open circuit potential of SS 400 is less noble than that of Cu and Al-Ni bronze, corrosion current density of SS5 400 is high drained than that of Cu and Al-Ni bronze. 3) Anodic polarization of Cu and Al-Ni bronze in $62\%$ LiBr solution continues the active state. that of Cu and Al-Ni bronze in the natural sea water maintains the active state and the critical current for passivation appears.

  • PDF

Fabrication and Properties of Reaction Squeeze Cast ($Al_2O_3{\cdot}SiO_2+Ni$)/Al Hybrid Metal Matrix Composites (반응 용탕단조한($Al_2O_3{\cdot}SiO_2+Ni$)/Al 하이브리드 금속복합재료의 제조 및 특성)

  • Kim, Sang-Suk;Park, Ik-Min;Kim, Sung-Joon;Choi, Il-Dong
    • Journal of Korea Foundry Society
    • /
    • v.17 no.4
    • /
    • pp.338-346
    • /
    • 1997
  • Mechanical properties of ($10%Al_2O_3{\cdot}SiO_2+5%Ni$)/Al hybrid composites fabricated by the reaction squeeze casting were compared with those of ($15%Al_2O_3{\cdot}SiO_2$)/Ai composites. Al-Ni intermetallic compounds ($10{\sim}20 {\mu}m$) formed by the reaction between nickel powder and molten aluminum were uniformly distributed in the Al matrix. These intermetallic compounds were identified as $Al_3Ni$ using X-ray diffraction analysis and they resulted in beneficial effects on room and high temperature strength and wear resistance. Microhardness values of ($10%Al_2O_3{\cdot}SiO_2+5%Ni$)/Al hybrid composite were greater by about 100Hv than those of ($15%Al_2O_3{\cdot}SiO_2$)/Al composite. Wear resistance of ($10%Al_2O_3{\cdot}SiO_2+5%Ni$)/Al hybrid composites was superior to that of ($15%Al_2O_3{\cdot}SiO_2$)/Al composites regardless of the applied load. While tensile and yield strength of ($10%Al_2O_3{\cdot}SiO_2+5%Ni$)/Al hybrid composites were greater at room temperature and $300^{\circ}C$, strength drop at high temperature was much smaller in hybrid composites.

  • PDF

High Temperature Oxidation Behavior of the Brazed Joint in Fe-Cr-Al-Y Alloy (Fe-Cr-AI-Y합금에서 브레이징 접합부의 고온산화거동)

  • Mun, Byeong-Gi;Choe, Cheol-Jin;Park, Won-Uk
    • 연구논문집
    • /
    • s.27
    • /
    • pp.201-208
    • /
    • 1997
  • To improve the joining characteristics of metallic converter substrate for exhaust gas cleaning, high temperature brazing process has been studied. In this study, the effect of chemical composition of brazing filler metal on the oxidation behavior of brazed joints was investigated closely. Brazing was carried out at $1200^\circC$ in vacuum furnace using nickel-based filler metals : BNi-5 powder(Ni-Cr-Si base alloy) and MBF-50 foil(Ni-Cr-Si-B). The MBF-50 containing 1-1.5 wt%B showed relatively poor oxidation resistance of the brazed joints compared to BNi-5, because of the faster invasion of oxygen through the Kirkendal voids along the interface of mother alloy/filler metal.

  • PDF

Influence of Heat Treatment on Transformation Characteristics in an Unidirectionally Solidified Cu-Al-Ni Alloy (일방향 응고된 Cu-Al-Ni 합금의 변태특성에 미치는 열처리 영향)

  • Park, Y.K.;Jang, W.Y.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.16 no.2
    • /
    • pp.90-96
    • /
    • 2003
  • The effect of betatizing temperature on microstructure and transformation characteristics in a Cu-AI-Ni based pseudoelastic alloy fabricated by heated mold continuous casting by using metallography, XRD and calorimetry. The microstructure of cast rod betatized at $600^{\circ}C$ revealed a ${\beta}_1$ parent phase and a ${\gamma}_2$ phase precipitated along the casting direction. When the cast rod was betatized at the elevated temperature above $600^{\circ}C$, the ${\gamma}_2$ phase is completely dissolved into the matrix so that the volume fraction of the ${\gamma}_2$ phase was decreased. The parent phase was stabilized by betatizing at $600^{\circ}C$. However, the ${\beta}_1$ parent phase was transformed to both ${{\beta}_1}^{\prime}$ and ${{\gamma}_1}^{\prime}$ martensites with increasing betatizing temperatures above $600^{\circ}C$, while $M_s$ and $A_s$ temperatures were decreased. The stress-strain curves for compression test were not same with betatizing temperature; the stress-strain curves of the specimen betatized at $600^{\circ}C$ and $700^{\circ}C$ were linear but those of the specimen betatized at $800^{\circ}C$ and $900^{\circ}C$ were not linear.