• Title/Summary/Keyword: Next-hop selection algorithm

Search Result 4, Processing Time 0.018 seconds

Query Slipping Prevention for Trajectory-based Contents Publishing and Subscribing in Wireless Sensor Networks (무선 센서 네트워크에서의 궤도 기반 콘텐츠 발간 및 구독을 위한 질의 이탈 방지)

  • Tscha, Yeong-Hwan
    • Journal of KIISE:Information Networking
    • /
    • v.32 no.4
    • /
    • pp.525-534
    • /
    • 2005
  • This paper is concerned with the query slipping and its prevention for trajectory-based matchmaking service in wireless sensor networks. The problem happens when a query propagating along a subscribe trajectory moves through a publish trajectory without obtaining desired information, even though two trajectories intersect geometrically. There follows resubmission of the query or initiation of another subscribe trajectory Thus, query slipping results in considerable time delay and in the worst, looping in the trajectory or query flooding the network. We address the problem formally and suggest a solution. First, the area where nodes are distributed is logically partitioned into smaller grids, and a grid-based multicast next-hop selection algorithm is proposed. Our algorithm not only attempts to make the trajectory straight but also considers the nodal density of recipient nodes and the seamless grid-by-grid multicast. We prove that the publishing and subscribing using the algorithm eventually eliminate the possibility of the slipping. It toms out that our algorithm dissipates significantly less power of neighbor nodes, compared to the non grid-based method, as greedy forwarding, and the fixed- sized grid approach, as GAF (Geographical Adaptive Fidelity)

An Adaptive Proximity Route Selection Method in DHT-Based Peer-to-Peer Systems (DHT 기반 피어-투-피어 시스템을 위한 적응적 근접경로 선택기법)

  • Song Ji-Young;Han Sae-Young;Park Sung-Yong
    • The KIPS Transactions:PartA
    • /
    • v.13A no.1 s.98
    • /
    • pp.11-18
    • /
    • 2006
  • In the Internet of various networks, it is difficult to reduce real routing time by just minimizing their hop count. We propose an adaptive proximity route selection method in DHT-based peer-to-peer systems, in which nodes select the nぉe with smallest lookup latency among their routing table entries as a next routing node. Using Q-Routing algorithm and exponential recency-weighted average, each node estimates the total latency and establishes a lookup table. Moreover, without additional overhead, nodes exchange their lookup tables to update their routing tables. Several simulations measuring the lookup latencies and hop-to-hop latency show that our method outperforms the original Chord method as well as CFS' server selection method.

A Virtual Grid-Based Routing Algorithm in Ad Hoc Networks (애드혹 네트워크에서의 가상 그리드 기반 라우팅 알고리즘)

  • Lee, Jong-Min;Kim, Seong-Woo
    • Journal of the Korea Society for Simulation
    • /
    • v.16 no.2
    • /
    • pp.17-26
    • /
    • 2007
  • In this paper, we propose a basic virtual grid-based routing algorithm in order to devise an efficient routing method in ad hoc networks using the location information of nodes, energy level, etc. A packet is forwarded to the X-axis direction at first based on the location information of a destination node, and then it is forwarded to the Y-axis direction as its location becomes close to the destination from the viewpoint of the X-axis. Due to the selection of next hop nodes to deliver a packet from a certain node to a destination node, we can regard the whole network as a virtual grid network. The proposed routing algorithm determines routing paths using the local information such as the location information of a destination and its neighbor nodes. Thus, the routing path setup is achieved locally, by which we can expect reduction in network traffics and routing delays to a destination. To evaluate the performance of the proposed routing algorithm, we used the network simulator ns2 and compared its network throughput with that of an existing routing algorithm.

  • PDF

Cross-layer Design and its Performance Evaluation of Joint Routing and Scheduling for Maximizing Network Capacity of Wireless Mesh Networks (무선 메쉬 네트워크의 최대 전송 성능을 위한 라우팅과 스케쥴링의 계층 교차적 설계 및 성능 분석)

  • Min, Seokhong;Kim, Byungchul;Lee, Jaeyong
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.12
    • /
    • pp.30-45
    • /
    • 2014
  • Recently, multimedia application users who demand for ubiquitous computing environment are rapidly increasing, and wireless mesh network is receiving attention as a cost-effective key technology for next generation wireless networking. When multiple flows are transmitting data at the same time in the network, routing for path selection of each flow and link resource allocation for data transmission of each flow are one of the key factors that influence to the effectiveness of the network directly. In this paper, we consider problems for path discovery and resource allocation of links at the same time and we propose an algorithm based on mathematical modeling using a technique for cross-layer optimization design in STDMA-based wireless mesh networks that can enhance transfer performance for each flow. We show by performance analysis that the proposed algorithm can enhance the throughput performance by maximally utilizing given bandwidth resources when the number of flows increase in multi-hop wireless mesh networks.