• Title/Summary/Keyword: Next-generation sequencing (NGS)

Search Result 170, Processing Time 0.025 seconds

Genetic Diagnosis of Inherited Metabolic Disorders using Next-Generation Sequencing (차세대 염기서열분석을 이용한 유전성 대사질환의 유전진단)

  • Chang-Seok Ki
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.23 no.2
    • /
    • pp.1-7
    • /
    • 2023
  • Inherited metabolic disorders (IMD) are a group of disorders involving various metabolic pathways. Genetic diagnosis of IMD has been challenging because of extremely heterogeneous nature and extensive laboratory and/or phenotype overlap. Conventional genetic diagnosis was a gene-by-gene approach that needs a priori information on the causative genes that might underlie the IMD. Recent implementation of next-generation sequencing (NGS) technologies has changed the process of genetic diagnosis from a gene-by-gene approach to simultaneous analysis of targeted genes possibly associated with the IMD using gene panels or using whole exome/genome sequencing (WES/WGS) covering entire human genes. Clinical NGS tests can be a cost-effective approach for the rapid diagnosis of IMD with genetic heterogeneity and are becoming standard diagnostic procedures.

  • PDF

A Korean Case of Neonatal Nemaline Myopathy Carrying KLHL40 Mutations Diagnosed Using Next Generation Sequencing

  • Suh, Yoong-a;Sohn, Young Bae;Park, Moon Sung;Lee, Jang Hoon
    • Neonatal Medicine
    • /
    • v.28 no.2
    • /
    • pp.89-93
    • /
    • 2021
  • Nemaline myopathy is a genetically heterogeneous neuromuscular disorder and one of the most common congenital myopathies. The clinical manifestations usually vary depending on the age of onset. Neonatal nemaline myopathy has the worst prognosis, primarily due to respiratory failure. Several genes associated with nemaline myopathy have been identified, including NEB, ACTA1, TPM3, TPM2, TNNT1, CFL2, KBTBD13, KLHL40, KLHL41, LMOD3, and KBTBD13. Here, we report a neonatal Korean female patient with nemaline myopathy carrying compound heterozygous mutations in the gene KLHL40 as revealed using next generation sequencing (NGS). The patient presented with postnatal cyanosis, respiratory failure, dysphagia, and hypotonia just after birth. To identify the genetic cause underlying the neonatal myopathy, NGS-based gene panel sequencing was performed. Compound heterozygous pathogenic variants were detected in KLHL40: c.[1405G>T];[1582G>A] (p. [Gly469cys];[Glu528Lys]). NGS allows quick and accurate diagnosis at a lower cost compared to traditional serial single gene sequencing, which is greatly advantageous in genetically heterogeneous disorders such as myopathies. Rapid diagnosis will facilitate efficient and timely genetic counseling, prediction of disease prognosis, and establishment of treatments.

Accelerating next generation sequencing data analysis: an evaluation of optimized best practices for Genome Analysis Toolkit algorithms

  • Franke, Karl R.;Crowgey, Erin L.
    • Genomics & Informatics
    • /
    • v.18 no.1
    • /
    • pp.10.1-10.9
    • /
    • 2020
  • Advancements in next generation sequencing (NGS) technologies have significantly increased the translational use of genomics data in the medical field as well as the demand for computational infrastructure capable processing that data. To enhance the current understanding of software and hardware used to compute large scale human genomic datasets (NGS), the performance and accuracy of optimized versions of GATK algorithms, including Parabricks and Sentieon, were compared to the results of the original application (GATK V4.1.0, Intel x86 CPUs). Parabricks was able to process a 50× whole-genome sequencing library in under 3 h and Sentieon finished in under 8 h, whereas GATK v4.1.0 needed nearly 24 h. These results were achieved while maintaining greater than 99% accuracy and precision compared to stock GATK. Sentieon's somatic pipeline achieved similar results greater than 99%. Additionally, the IBM POWER9 CPU performed well on bioinformatic workloads when tested with 10 different tools for alignment/mapping.

Efficient Processing of Next Generation Sequencing Reads Using Hitting Set Problem (Hitting Set 문제를 이용한 Next Generation Sequencing Read의 효율적인 처리)

  • Park, Tae-Won;Kim, So-Ra;Choi, Seok-Moon;Cho, Hwan-Gue;Lee, Do-Hoon
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2011.06b
    • /
    • pp.466-469
    • /
    • 2011
  • 최근에 등장한 Next Generation Sequencing(NGS)은 전통적인 방법에 비해 빠르고 저비용으로 대용량의 시퀀스 데이터를 이용한 차세대 시퀀싱 기술을 말한다. 이렇게 얻은 NGS 데이터를 분석하는 단계 중에서 alignment 단계는 시퀀서에서 얻은 대량의 read를 참조 염기서열에 맵핑하는 단계로 NGS 데이터 분석의 가장 기본이면서 핵심인 단계이다. alignment 도구는 긴 참조 염기서열을 색인화해서 짧은 read를 빠르게 맵핑하는 용도로 사용된다. 현재 많이 사용되고 있는 일반적인 alignment 도구들은 입력데이터에 대한 별도의 전처리 과정이 없으며 나열된 read를 순차적으로 맵핑하는 단순한 구조를 가지고 있다. 본 논문은 NGS 데이터의 특징 중에 특히 read간의 중복성이 존재하고 이를 이용한 read의 효율적 공통부분 서열을 찾는다. 중복이 가능한 read의 공통부분서열과 read의 관계를 그래프 이론의 Hitting Set 문제로 모델링하고 여러 read가 포함하는 공통 부분서열을 사용해서 alignment 단계의 효율을 높일 수 방법을 제안한다.

Genomic epidemiology and surveillance of zoonotic viruses using targeted next-generation sequencing (표적화 차세대염기서열분석법을 이용한 인수공통 바이러스의 유전체 역학과 예찰)

  • Seonghyeon Lee;Seung-Hwan Baek;Shivani Rajoriya;Sara Puspareni;Won-Keun Kim
    • Korean Journal of Veterinary Service
    • /
    • v.46 no.1
    • /
    • pp.93-106
    • /
    • 2023
  • Emerging and re-emerging zoonotic viruses become critical public health, economic, societal, and cultural burdens. The Coronavirus disease-19 (COVID-19) pandemic reveals needs for effective preparedness and responsiveness against the emergence of variants and the next virus outbreak. The targeted next-generation sequencing (NGS) significantly contributes to the acquisition of viral genome sequences directly from clinical specimens. Using this advanced NGS technology, the genomic epidemiology and surveillance play a critical role in identifying of infectious source and origin, tracking of transmission chains and virus evolution, and characterizing the virulence and developing of vaccines during the outbreak. In this review, we highlight the platforms and preparation of targeted NGS for the viral genomics. We also demonstrate the application of this strategy to take advantage of the responsiveness and prevention of emerging zoonotic viruses. This article provides broad and deep insights into the preparedness and responsiveness for the next zoonotic virus outbreak.

Lung Adenocarcinoma Gene Mutation in Koreans: Detection Using Next Generation Sequence Analysis Technique and Analysis of Concordance with Existing Genetic Test Methods (한국인의 폐선암 유전자 돌연변이: 차세대 염기서열 분석법을 이용한 검출 및 기존 유전자 검사법과의 일치도 분석)

  • Jae Ha BAEK;Kyu Bong CHO
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.55 no.1
    • /
    • pp.16-28
    • /
    • 2023
  • Lung adenocarcinoma accounts for about 40% of all lung cancers. With the recent development of gene profiling technology, studies on mutations in oncogenes and tumor suppressor genes, which are important for the development and growth of tumors, have been actively conducted. Companion diagnosis using next-generation sequencing helps improve survival with targeted therapy. In this study, formalin-fixed paraffin-embedded tissues of non-small cell lung cancer patients were subjected to hematoxylin and eosin staining for detecting genetic mutations that induce lung adenocarcinoma in Koreans. Immunohistochemical staining was also performed to accurately classify lung adenocarcinoma tissues. Based on the results, next-generation sequencing was applied to analyze the types and patterns of genetic mutations, and the association with smoking was established as the most representative cause of lung cancer. Results of next-generation sequencing analysis confirmed the single nucleotide variations, copy number variations, and gene rearrangements. In order to validate the reliability of next-generation sequencing, we additionally performed the existing genetic testing methods (polymerase chain reaction-epidermal growth factor receptor, immunohistochemistry-anaplastic lymphoma kinase (D5F3), and fluorescence in situ hybridiation-receptor tyrosine kinase 1 tests) to confirm the concordance rates with the next-generation sequencing test results. This study demonstrates that next-generation sequencing of lung adenocarcinoma patients simultaneously identifies mutation.

A Primer for Disease Gene Prioritization Using Next-Generation Sequencing Data

  • Wang, Shuoguo;Xing, Jinchuan
    • Genomics & Informatics
    • /
    • v.11 no.4
    • /
    • pp.191-199
    • /
    • 2013
  • High-throughput next-generation sequencing (NGS) technology produces a tremendous amount of raw sequence data. The challenges for researchers are to process the raw data, to map the sequences to genome, to discover variants that are different from the reference genome, and to prioritize/rank the variants for the question of interest. The recent development of many computational algorithms and programs has vastly improved the ability to translate sequence data into valuable information for disease gene identification. However, the NGS data analysis is complex and could be overwhelming for researchers who are not familiar with the process. Here, we outline the analysis pipeline and describe some of the most commonly used principles and tools for analyzing NGS data for disease gene identification.

Caution and Curation for Complete Mitochondrial Genome from Next-Generation Sequencing: A Case Study from Dermatobranchus otome (Gastropoda, Nudibranchia)

  • Do, Thinh Dinh;Choi, Yisoo;Jung, Dae-Wui;Kim, Chang-Bae
    • Animal Systematics, Evolution and Diversity
    • /
    • v.36 no.4
    • /
    • pp.336-346
    • /
    • 2020
  • Mitochondrial genome is an important molecule for systematic and evolutionary studies in metazoans. The development of next-generation sequencing (NGS) technique has rapidly increased the number of mitogenome sequences. The process of generating mitochondrial genome based on NGS includes different steps, from DNA preparation, sequencing, assembly, and annotation. Despite the effort to improve sequencing, assembly, and annotation methods of mitogenome, the low quality and/or quantity sequence in the final map can still be generated through the work. Therefore, it is necessary to check and curate mitochondrial genome sequence after annotation for proofreading and feedback. In this study, we introduce the pipeline for sequencing and curation for mitogenome based on NGS. For this purpose, two mitogenome sequences of Dermatobranchus otome were sequenced by Illumina Miseq system with different amount of raw read data. Generated reads were targeted for assembly and annotation with commonly used programs. As abnormal repeat regions present in the mitogenomes after annotation, primers covering these regions were designed and conventional PCR followed by Sanger sequencing were performed to curate the mitogenome sequences. The obtained sequences were used to replace the abnormal region. Following the replacement, each mitochondrial genome was compared with the other as well as the sequences of close species available on the Genbank for confirmation. After curation, two mitogenomes of D. otome showed a typically circular molecule with 14,559 bp in size and contained 13 protein-coding genes, 22 tRNA genes, two rRNA genes. The phylogenetic tree revealed a close relationship between D. otome and Tritonia diomea. The finding of this study indicated the importance of caution and curation for the generation of mitogenome from NGS.

Genetic tests by next-generation sequencing in children with developmental delay and/or intellectual disability

  • Han, Ji Yoon;Lee, In Goo
    • Clinical and Experimental Pediatrics
    • /
    • v.63 no.6
    • /
    • pp.195-202
    • /
    • 2020
  • Developments in next-generation sequencing (NGS) techogies have assisted in clarifying the diagnosis and treatment of developmental delay/intellectual disability (DD/ID) via molecular genetic testing. Advances in DNA sequencing technology have not only allowed the evolution of targeted panels but also, and more currently enabled genome-wide analyses to progress from research era to clinical practice. Broad acceptance of accuracy-guided targeted gene panel, whole-exome sequencing (WES), and whole-genome sequencing (WGS) for DD/ID need prospective analyses of the increasing cost-effectiveness versus conventional genetic testing. Choosing the appropriate sequencing method requires individual planning. Data are required to guide best-practice recommendations for genomic testing, regarding various clinical phenotypes in an etiologic approach. Targeted panel testing may be recommended as a firsttier testing approach for children with DD/ID. Family-based trio testing by WES/WGS can be used as a second test for DD/ID in undiagnosed children who previously tested negative on a targeted panel. The role of NGS in molecular diagnostics, treatment, prediction of prognosis will continue to increase further in the coming years. Given the rapid pace of changes in the past 10 years, all medical providers should be aware of the changes in the transformative genetics field.

Efficiency to Discovery Transgenic Loci in GM Rice Using Next Generation Sequencing Whole Genome Re-sequencing

  • Park, Doori;Kim, Dongin;Jang, Green;Lim, Jongsung;Shin, Yun-Ji;Kim, Jina;Seo, Mi-Seong;Park, Su-Hyun;Kim, Ju-Kon;Kwon, Tae-Ho;Choi, Ik-Young
    • Genomics & Informatics
    • /
    • v.13 no.3
    • /
    • pp.81-85
    • /
    • 2015
  • Molecular characterization technology in genetically modified organisms, in addition to how transgenic biotechnologies are developed now require full transparency to assess the risk to living modified and non-modified organisms. Next generation sequencing (NGS) methodology is suggested as an effective means in genome characterization and detection of transgenic insertion locations. In the present study, we applied NGS to insert transgenic loci, specifically the epidermal growth factor (EGF) in genetically modified rice cells. A total of 29.3 Gb (${\sim}72{\times}coverage$) was sequenced with a $2{\times}150bp$ paired end method by Illumina HiSeq2500, which was consecutively mapped to the rice genome and T-vector sequence. The compatible pairs of reads were successfully mapped to 10 loci on the rice chromosome and vector sequences were validated to the insertion location by polymerase chain reaction (PCR) amplification. The EGF transgenic site was confirmed only on chromosome 4 by PCR. Results of this study demonstrated the success of NGS data to characterize the rice genome. Bioinformatics analyses must be developed in association with NGS data to identify highly accurate transgenic sites.