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High-throughput next-generation sequencing (NGS) technology produces a tremendous amount of raw sequence data. The 
challenges for researchers are to process the raw data, to map the sequences to genome, to discover variants that are 
different from the reference genome, and to prioritize/rank the variants for the question of interest. The recent development 
of many computational algorithms and programs has vastly improved the ability to translate sequence data into valuable 
information for disease gene identification. However, the NGS data analysis is complex and could be overwhelming for 
researchers who are not familiar with the process. Here, we outline the analysis pipeline and describe some of the most 
commonly used principles and tools for analyzing NGS data for disease gene identification. 
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Introduction

The breakthrough in next-generation sequencing (NGS) 
techniques has enabled rapid sequencing of whole genomes 
at low cost and has brought tremendous opportunities as 
well as challenges to biomedical research [1-5]. The cost of 
sequencing is projected to continue to drop, with whole- 
genome sequencing expected to be as low as $1000 [4] and 
whole-exome sequencing (i.e., sequencing approximately 
1% of the coding regions of the genome [6]) to be $500 [1]. 
Such low costs enable a small research lab to generate large 
amounts of sequence data in a short period of time on a 
relatively small budget. The low cost also allows sequencing- 
based clinical genetic tests to be routinely performed to 
provide guidance for health professionals for disease etio-
logy and management. The challenge now is how to reliably 
synthesize and interpret this large amount of raw data from 
sequencing platforms. 

One goal of genomic research is to determine which genes 
are causal for the disease of interest. With the NGS data, this 
is not a trivial task. Large-scale whole-genome and whole- 
exome sequencing analyses identify large amounts of geno-
mic variants, most of which are not related to disease risk. 

Thus, disease gene prioritization principles and tools are 
needed [2] to identify and prioritize variants of interest from 
the large pool of candidates. Currently, identifying candidate 
causal mutations/genes is often a complex practice that 
involves several dozens of steps and/or tools to accomplish. 
These tools work jointly in a series of steps and thus 
functionally form a “workflow” or a “pipeline.” Ideally, the 
process of disease gene prioritization generates an ordered 
list of genes that puts high-risk candidates on the top of the 
stack and filters out “benign” or neutral variants. In reality, 
this process usually involves multiple filtering steps, some of 
which have underlying assumptions that can affect how 
variants are filtered.

The focus of this review is to provide a broad overview of 
the workflow and present some of the bioinformatics 
software tools that are currently available. More in-depth 
comparisons of the bioinformatics algorithms and tools are 
described elsewhere [3, 5].

Workflow for Disease Gene Filtering/Prio-
ritization

Typically, the output from NGS platforms is in the stan-
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dard FASTQ format. The FASTQ file is a text file containing 
a list of short DNA fragments, generally less than 150 base 
pairs (bp) long, and a list of quality scores associated with 
the DNA fragments. For whole-genome or whole-exome 
sequencing, a FASTQ file contains millions of records. For 
example, the human exome is ~50 million base pairs (Mbp), 
and a typical whole-exome sequencing dataset has at least 
30X depth of coverage (i.e., each bp is sequenced 30 times on 
average). Such a FASTQ file will contain ~15 million raw 
100-bp sequences. To identify the causal genes from this raw 
data, a variant gene prioritization pipeline usually involves 
three stages or phases of data processing: 1) raw sequence 
processing and mapping, 2) variant discovery and geno-
typing, and 3) disease gene filtering and/or prioritization. 

Phase 1: Raw sequence processing and mapping

Overview
The goal of Phase 1 is to preprocess the FASTQ file and 

evaluate the quality of the raw reads and then to map or align 
the sequences to the reference genome－that is, to find the 
best location on the reference genome where each sequence 
might have originated. Successfully mapped sequences are 
annotated with information that includes the location on a 
specific chromosome and how well the sequence matches 
the reference genome. After initial mapping, there are seve-
ral subsequent recalibration steps to improve the mapping 
results. 

Preprocessing
The raw FASTQ file contains all of the raw sequences, 

some of which are of low quality. The overall quality should 
be evaluated, and the lower-quality reads should be removed 
before mapping to the reference genome to improve 
mapping efficiency. FASTQC (http://www.bioinformatics. 
babraham.ac.uk/projects/fastqc/) is a popular tool that 
produces quality analysis reports on FASTQ files. FASTQC 
provides graphical reports on several useful statistics, such 
as “Per base sequence quality,” “Sequence duplication 
levels,” and “Overrepresented sequences,” etc. Specifically, 
“Per base sequence quality” determines if trimming low- 
quality sequences is needed before the mapping/alignment 
step; “Sequence duplication levels” evaluates the library 
enrichment and complexity; and “Overrepresented sequen-
ces” evaluates potential adaptor contamination. Low-quality 
bases and adaptor contaminations can cause an otherwise 
mappable sequence not to map and therefore should be 
removed (e.g., trim the 3’ end of the read. which tends to 
have low quality). FASTX-Toolkit (http://hannonlab.cshl. 
edu/fastx_toolkit/) provides a set of command line tools for 
manipulating FASTQ files, such as trimming input se-
quences down to a fixed length or trimming low-quality 

bases. Cutadapt (https://github.com/marcelm/cutadapt) 
can be used for trimming short reads to remove potential 
adapter contamination. 

Mapping
Once high-quality sequence data are obtained, a number 

of bioinformatics programs, including Mosaik [7], MAQ 
(http://maq.sourceforge.net/), mrFAST [8], BWA [9], 
Bowtie2 [10], SOAP2 [11], and Subread [12], can be used to 
perform short-read sequence alignment to the reference 
genome. Several recent studies provided a detailed descrip-
tion and comparison of the alignment programs [5, 13], 
although it could be difficult to choose among aligners, 
because benchmark results vary across studies [10, 12, 14]. 
BWA and Bowtie2 are two popular programs for alignment. 
Both programs employ the Burrows-Wheeler transform 
(BWT) algorithm and have been shown to yield very good 
overall performance [13]. Bowtie2 is often used for mapping 
ChIP-seq and RNA-seq data, and BWA is often used for 
mapping whole-genome/exome data. We highlight the BWA 
program here, because it is accurate, fast, thoroughly tested, 
and well supported. Additionally, BWA has been utilized in 
multiple large-scale projects and well-defined workflows, 
including the Genome Analysis Toolkit (GATK) by Broad 
Institute [15], the 1000 Genome Project [16], the NHLBI 
GO Exome Sequencing Project (ESP) (http://evs.gs. 
washington.edu/EVS/), and the HugeSeq workflow [17]. 
Various commercial companies, such as Seven Bridges 
Genomics (https://www.sbgenomics.com/) and Geospiza 
GeneSifter (http://www.geospiza.com/), also utilize BWA 
in their standard workflows.  

After mapping the reads, the final output file from most 
software is typically in the sequence alignment/map (SAM) 
format [18]. In some cases, the SAM file is converted to its 
binary format (BAM) using SAMtools [18] to reduce the file 
size and optimize computation performance. 

Recalibration
After the initial mapping procedure, subsequent recali-

bration steps are typically employed to improve the mapping 
results, such as performing local realignment or de novo 
assembly for regions that contain insertions/deletions 
(indels), removing PCR duplicates, and recalibrating the 
base quality scores. Indel realignment is a highly recom-
mended post-BAM processing procedure. Due to the 
trade-off between speed and accuracy, indels are not well 
aligned by most general purpose aligners. This could lead to 
false variant calls in downstream analyses. Regions with 
high probability of potential indels can be realigned locally 
using IndelRealigner, part of the GATK toolkit. Another 
commonly used recalibration procedure is removing PCR 
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duplicates. If a DNA fragment is amplified many times by 
PCR during the sequencing library construction, these 
artificially duplicated sequences can be considered as 
support of a variant by downstream variant discovery pro-
grams. Some BAM processing programs, such as Picard 
(http://picard.sourceforge.net/) and Samtools [18], can 
identify these artificially duplicated sequences and remove 
them. Base recalibration is also a recommended step, 
because the sequencer may have assigned a biased quality 
score upon reading a base (e.g., the score of a second “A” base 
after a first “A” base may always receive a biased quality score 
from a sequence machine [19]). Tools, such as Base-
Recalibrator in the GATK toolkit, can calibrate the quality 
score to more accurately reflect the probability of a base 
mismatching the reference genome. One additional optional 
step, recommended by GATK, is data compression and reads 
reduction, especially for high-coverage data. For example, if 
a large chunk of sequences matches the reference exactly, it 
is not necessary to keep all the data, as they do not carry 
useful information for downstream analyses (assuming we 
are only interested in the sites that are different from the 
reference genome). In such a scenario, keeping one copy of 
each of the consensus sequences may be sufficient, and the 
redundancies can be removed to reduce file size and enable 
faster downstream computing. However, keeping a copy of 
the original file is highly recommended after data com-
pression. 

Phase 2: Variant discovery and genotyping

Overview
In many scenarios, only the sites that differ from the refe-

rence genome are of interest, because sites that are identical 
to the reference genome are not expected to be related to 
pathological conditions. Once raw sequences are properly 
mapped to the reference genome, the next step is to find all 
positions in an individual’s genome that differed from the 
reference. This phase is referred to as variant discovery, or 
variant calling. Similar to the mapping phase, variant calling 
also contains an initial discovery step, followed by several 
filtering processes to remove sequencing errors and other 
types of false discoveries, and finally, the individual geno-
types are inferred (i.e., if a locus is heterozygous, homo-
zygous, or hemizygous for the variant). The output of variant 
calling contains all the variants and related information. 
Sites that are identical to the reference genome (i.e., inva-
riant sites) are usually not included in the output variant file.

Variant discovery and genotyping
A number of variant calling software packages can be used 

to identify variants and call individual genotypes. Some of 
the commonly used software programs are SAMtools [18], 

freebayes (http://github.com/ekg/freebayes), SNPtools 
[20], GATK UnifiedGenotyper, and GATK HaplotypeCaller. 
Some of the tools, including SAMtools, SNPtools, and the 
GATK UnifiedGenotyper, use a mapping-based approach. 
Other tools, such as freebayes and the GATK Haplotype-
Caller, use a local assembly approach. A more detailed survey 
and comparison of the tools have been previously described 
[5, 21]. These procedures typically take the BAM files from 
the “raw sequence processing and mapping” phase, together with 
the reference genome sequence in a FASTA file. The output 
file from this step is usually in the standard variant call 
format (VCF). Some of the tools allow the user to specify 
known variants to optimize the variant discovery. For exam-
ple, GATK UnifiedGenotyper uses known variants (e.g., 
from the dbSNP database) as high-confidence datasets to 
assist model training. After variant and genotype calling, the 
probability scores of variants are recalibrated, and artifacts 
are identified. The artifacts can be removed subsequently 
either by filtering the data using a series of criteria or by 
building and applying an error model. 

One example of the variant discovery tool is the GATK 
UnifiedGenotyper, which calls variants by examining the 
reference genome base by base, without correcting misa-
lignment issues. This procedure could lead to false positive 
calls, particularly in regions containing indels. To increase 
the accuracy and sensitivity, calling multiple samples simul-
taneously is recommended. By taking into account the 
information of a variant in a population, the accuracy and 
sensitivity of variant discovery are greatly improved, espe-
cially for common variants [16, 22]. The GATK Haplotype-
Caller, as compared to the UnifiedGenotyper, calls all 
variants (single nucleotide polymorphisms [SNPs], indels, 
structural variations, etc.) simultaneously by performing 
local de novo assembly of haplotypes and emits more accu-
rate call sets, with the drawback of being slower. In general, 
structural variations (SVs) and copy number variations 
(CNVs) are more difficult to detect than SNPs and indels 
because of their heterogeneous nature. For SVs and CNVs, it 
is generally recommended to apply a combination of several 
tools and take the overlapping variant sites for high- 
confidence calls [17].

Genotype phasing and refinement
After the initial variant discovery and recalibration, va-

riant genotyping and/or phasing are performed to provide 
critical information for downstream medical and population 
genetic studies that require accurate haplotype structures. 
For example, Mendelian diseases may be caused by a com-
pound heterozygote event where heterogeneous mutations 
are found on different chromosomes. In such a scenario, 
knowledge about the paternal or maternal origin of a variant 
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can provide valuable information. The GATK workflow 
recommends three steps of genotype phasing: transmission 
based on pedigree, haplotype based on reads, and statistical 
imputation. GATK PhaseByTransmission incorporates pedi-
gree data to assist genotype calling, while GATK Read-
BackedPhasing performs physical phasing of variant calling 
based on sequence reads. Statistical imputation of genotypes 
can be processed by several programs, such as Beagle [23, 
24], IMPUTE2 [25], and MACH [26].

Phase 3: Disease gene filtering and/or prioritization

Overview
A typical variant call pipeline will produce approximately 

3 million variants from one whole-genome sequencing data 
set and more than 20 thousand variants from one whole- 
exome sequencing data set [27]. Because disease causing 
mutations might just be several “needles” in this tremen-
dous “haystack” of variants, rigorous algorithms and high- 
quality databases are essential to accurately locate the 
candidate genes. This process is done either by filtering out 
variants that are not likely to carry a disease risk or by 
ranking all variants based on biological/statistical models, 
such that high-risk candidates rank at the top of the list [1, 
2, 4]. Unlike Phase 1 and Phase 2, which have largely 
converged to well-formed computation workflows and 
platform-free file formats (e.g., FASTQ, BAM, and VCF 
formats), Phase 3 has more variations in the tools and 
workflows to suit the different needs of various research or 
clinical projects. 

Annotation
Although many different strategies can be used to search 

for disease-causing mutations, some general procedures are 
shared. The first step, variant annotation, typically inves-
tigates the potential pathogenic impact of a variant, before 
any subsequent filtering or prioritizing. The goal is to 
identify and report the effect of each variant with respect to 
predefined “features,” such as genes. For example, if a 
variant (SNP or indel) is present within the coding region, 
the potential effects include change to amino acid (non- 
synonymous), no change to amino acid (synonymous), 
introduction of stop codon (stop gain), removal of stop 
codon (stop loss), addition/removal of amino-acid(s) (in-
frame indel), and change to the open reading frame 
(frame-shifting indel), etc. Other than variant call files, the 
annotation process requires a feature file that defines the 
location of genomic features (e.g., transcript, exon, intron, 
etc.), which is usually in browser extensible data (BED) 
format [28], or generic feature format version 3 (GFF3) 
format maintained by the Sequence Ontology project [29]. 
In many situations, the reference genome in FASTA format is 

also provided as part of the input, and the annotated variants 
are likely to be platform-specific [30, 31]. Annotation is part 
of the workflow for almost all variant analysis tools, such as 
the open source software package VAAST [31], ANNOVAR 
[27], and many commercial service providers (e.g., Inge-
nuity, Golden Helix, Geospiza GeneSifter, Omicia, Seven 
Bridges Genomics, Biobase, etc.).

Once the variants are annotated, a number of methods can 
be used to predict the severity of a variant, based either on 
the protein sequence conservation information (e.g., 
BLOSOM62, SIFT) or the DNA sequence conservation 
information (e.g., PhastCons). The SIFT [32] score system 
assumes that protein “motifs” or “sites” are functionally 
important if they are highly conserved across species. For 
example, coding regions, active sites of enzymes, many 
splice sites, and promoters are usually conserved across 
species [32]. Technically, SIFT uses protein homology to 
calculate position-specific scores, which are then used to 
evaluate if an amino acid substitution at a specific location is 
damaging or tolerated. The accuracy of the SIFT prediction 
depends largely on the availability and the diversity of the 
homologous sequences across species. Therefore, the appli-
cation and accuracy of SIFT are limited if there is limited 
homolog information or if the diversity is low. The 
BLOSUM62 matrix [33] is a more general-purpose score 
system that is based on the alignment of protein homologs 
with a maximum of 62% identity. The BLOSUM62 matrix is 
then calculated based on the count of the observed frequency 
of specific amino acid substitutions. The PhastCons score 
[34] is calculated based on DNA sequence conservation in a 
multiple alignment. It uses a statistical model of sequence 
evolution and considers the phylogeny relationship of 
multiple species. Instead of measuring the statistical simi-
larity and diversity in percent identity, PhastCons uses a 
phylogenetic Hidden Markov Model and provides base- 
by-base conservation scores. Because the PhastCons score is 
calculated for each base, it can be applied to regions beyond 
the coding sequence to provide valuable information for 
prioritizing non-coding variants. 

In addition to the conservation information, many soft-
ware packages also incorporate protein structure infor-
mation, such as the positions of active sites and secondary 
structures, into the prediction algorithm (e.g., Polyphen2, 
SNAP). Polyphen2 [35] combines eight sequencing features 
(e.g., congruency of the variant allele to the multiple 
alignment) and three structural features (e.g., changes in 
hydrophobic propensity) to score an amino acid substi-
tution. The homology search and model training of Poly-
phen2 are based on the UniProt database. It worth noting 
that Polyphen2 provides two different prediction models 
that use different datasets for training, with HumVar tuned 
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to score Mendelian diseases and HumDiv tuned to evaluate 
rare alleles at loci that are potentially involved in complex 
traits. SNAP [36] is another tool that uses various protein 
information, such as the secondary structure and conser-
vation, to predict the functional effect of a variant. 

Filtering
After variant annotation, two types of disease-gene identi-

fication strategies are commonly employed. A filter-based 
approach uses a series of criteria to sort out variants or genes 
that are unlikely to be causative, given a disease model. For 
example, in a typical workflow of ANNOVAR, variants that 
overlap with the 1000 Genome Project are removed from the 
list. Since the 1000 Genome Project aimed to identify com-
mon SNPs with a minor allele frequency (MAF) greater than 
1%, these variants are thought to be “benign” in a rare 
Mendelian disease, under the assumption that the causing 
mutation of a rare disease should have a very low MAF. The 
HapMap [37, 38] database, which intended to identify 
haplotype-defining variants in different populations, can 
also be used for variant selection. In some cases, high fre-
quency of a haplotype can be related to a specific disease, and 
can help researchers focus on a subset of variants within a 
specific region. Another commonly applied filter is to ex-
clude non-coding variants under the assumption that a 
disease-causing mutation should occur in the coding regions 
and affect protein sequences. Several other filtering criteria 
are also commonly used, such as filtering variants with little 
predicted functional impact (e.g., synonymous variants) or 
having low-quality scores (e.g., low read-depth or low 
genotype quality score). A disease model can also help filter 
variants. For example, a disease under a recessive mode of 
inheritance requires more than one deleterious variant in a 
gene. 

The filtering strategy is intuitive and easy to perform and 
has been successful in early whole-genome/exome studies 
on rare, single-gene Mendelian diseases. Numerous tools 
have been developed to apply various filtering strategies 
(reviewed in [1, 2, 4, 5]). However, caution should be taken 
when studying common, complex diseases, because apply-
ing hard filters could remove real casual variants. For in-
stance, common diseases could be caused by common vari-
ants that have incomplete penetrance (i.e., not all indi-
viduals carrying the variant will have the disease). 

Ranking
To overcome the difficulties associated with hard filtering, 

a prioritizing approach ranks each gene or feature based on 
the cumulative disease risk of potential deleterious variants. 
As an example, the VAAST tool kit performs the composite 
likelihood ratio test to determine the risk of a gene or a 

feature [30, 31]. Information of each variant within the gene, 
such as the predicted biological impact, allele frequency, and 
the conservation score of the variant allele, is considered 
simultaneously under a likelihood framework. One advan-
tage is that it reduces the risk of filtering out potential risky 
coding variants, since there are no hard filtering steps. 
Another advantage is that it can score all variants, including 
non-coding variants that would have otherwise been filtered 
out. The statistical framework used by VAAST considers two 
sets of information: 1) the likelihood of observing the MAF 
of a variant under a disease model versus a non-disease 
model; and 2) the likelihood that a variant is deleterious 
versus non-deleterious. A combination of the observed 
frequency and predicted functional impact of variants is used 
to assess the disease risk of a gene. 

A practical consideration is that most variants in the 
sequencing study are rare and may be difficult to achieve 
sufficient power for a statistical model [39]. To overcome 
this, a common solution is to assess the cumulative effects of 
multiple variants in a defined genomic region, such as a gene 
or an exon [39-41]. This approach evaluates the overall 
genetic burden of multiple rare variants and is referred to as 
the burden test. Two general methods are commonly used to 
collapse multiple rare variants [40], known as the cohort 
allelic sum test (CAST) and combined multivariate and 
collapsing (CMC) method. The CAST method measures the 
differences (between case group and control group) in the 
number of individuals who carry one or more rare variants 
[39, 42], while the CMC method treats all rare variants as a 
single count for analysis with common variants [39]. Since 
both methods implicitly assume that all variants influence 
the phenotype in the same direction [39, 40], it could 
introduce substantial noise if a lot of the rare variants are 
neutral [40]. Alternatives to these two basic methods are 
also available [40]. For example, by default, the VAAST 
program combines all variants that have less than three 
copies in a gene into one pseudo-site for scoring. 

Pathway analysis
Pathway analysis is an alternative way to search for dele-

terious genes. The assumption is that a single mutation in a 
single gene may not be very harmful but that a combination 
of mutations in several genes causes the disease. In this type 
of analysis, variants are put in a context of biological 
processes, pathways, and networks to gain global per-
spective on the data. A large number of knowledge bases and 
tools have been developed for this task (reviewed in [43, 
44]). In general, pathway systems contain a curation process 
that is either manual or automatic, followed by database 
assembly and refinement [43]. Many public knowledge base 
and analysis tools are available, such as Kyoto Encyclopedia 
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Fig. 1. Example workflow for disease gene
identification using next-generation sequen-
cing data. SAM, sequence alignment/map; 
BAM, binary format; SNP, single nucleotide
polymorphism; VCF, variant call format.

of Genes and Genomes (KEGG) (http://www.kegg.jp/); 
BioCyc (http://www.biocyc.org/), provided by SRI inter-
national; PANTHER [45]; Reactome [46]; and DAVID [47]. 
Optionally, commercial systems, such as Ingenuity Pathway 
Analysis (http://www.ingenuity.com/ products/ipa), Path-
way Studio (http://www.elsevier.com/online-tools/pathway- 
studio), and GeneGo (http://portal. genego.com/), are also 
available. Ingenuity Variant Analysis (http://www.inge-
nuity.com/products/variant-analysis) is also backed up 
with Ingenuity Knowledge Base and can consider the 
upstream and downstream genes of a variant in a pathway 
and evaluate the potential role of a gene by incorporating the 
related genes. 

Gene Identification Pipeline: An Example

To help readers who have limited experience with NGS 
data to understand the workflow, in this section we will 
show a real example of a pipeline that was used to process 
whole-exome sequencing data from raw sequences to a 
ranked candidate gene list (Fig. 1). The pipeline is con-
structed, based on the three-phase organization, as des-
cribed in the previous sections. We start from raw sequence 
FASTQ files and assume no quality control has been 
performed or reported. Please note that each tool is likely to 
require dependent files, such as the reference genome, the 
1000 Genome variants, dbSNP variants, and the genome 
feature file in GFF3 format, etc. 

Sequence mapping

- Raw sequence quality control. FastQC can be used to 
perform graphical quality checks on the raw sequence. 
FastX can be used to filter the reads by specifying quality 
score ranges. 

- Initial mapping. BWA is recommended for mapping 
Illumina reads. The first step of BWA is to generate 
suffix array coordinates for mapping the reads; then, one 
performs the actual alignment and outputs SAM format 
files. The SAM file is converted to BAM format, sorted, 
and indexed using Samtools for faster downstream 
processing (sorting is often required by many down-
stream tools). 

- Alignment recalibration. The GATK RealignerTarget-
Creator tool is used to create target regions for realign-
ment, followed by the IndelRealigner tool to perform 
the actual realignment and output new BAMs. The 
Picard MarkDuplicates tool is then used to mark and 
remove duplicated sequences, followed by the Picard 
BuildBamIndex tool to rebuild the index. Next, GATK’s 
BaseRecalibrator tool is used to recalibrate the base 
quality scores, and PrintReads is used to output the 
final, analysis-ready reads in BAM format. 

Variant discovery

- Initial variant discovery. The GATK UnifiedGenotyper 
tool is used to perform initial raw variant calling and 
output VCF files. 

- Variant recalibration and filtering. SNPs and indels are 
processed separately but in a similar manner; so, we will 
only describe SNPs as an example. The GATK Select-
Variants tool is used to select SNPs within the exome 
regions from raw VCF files. The VariantRecalibrator tool 
is then used to build Gaussian models for recalibration, 
followed by the ApplyRecalibration tool to apply models 
for SNP recalibration. Low-quality SNPs are then re-
moved by imposing a filtering step, based on a user- 
defined variant quality score recalibration (VQSR) score 
threshold. After SNPs and indels are reprocessed, the 
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GATK CombineVariants tool is used to combine the 
recalibrated SNPs and indels. 

Disease gene prioritization

- Variant annotation. VCF files are converted to genome 
variation format (GVF) format using the VAAST vaast_ 
converter tool. The variants are then annotated using the 
VAAST VAT tool. 

- Variant selection. The annotated variants are selected 
and condensed to condenser (CDR) format using the 
VAAST VST tool for cases and controls, respectively. 

- Gene prioritization. VAAST is used to perform disease 
gene ranking and output a text file containing a list of 
ranked candidate genes. 

Automated Workflows vs. Flexible Pipelines

High-throughput data processing and analysis are be-
coming reliable and efficient, thanks to numerous high- 
quality tools that are mostly open source, with long-term 
active support and frequent updates to incorporate new 
advances in the field. A typical workflow covering all three 
phases outlined above involves many different tools and/or 
steps, databases, score systems, and file re-formatting steps. 
Therefore, it is not a trivial task to perform a data processing 
task, starting from the raw FASTQ files to the identification 
of candidate genes. There are many tools and dependencies 
of tools that need to be installed and many steps and many 
parameters that need to be specified. This could be a big 
hurdle for researchers that have limited experience with 
NGS data pipelines. It would be a good idea for the com-
munity to converge on several standardized, well-con-
figured, project-optimized, and automated workflows that 
can be used widely with minimum user interface. HugeSeq 
[17] by Stanford is a comprehensive, automated workflow 
that integrates around two dozen bioinformatics tools and 
can process FASTQ/FASTA files, perform various quality 
control and clean-ups, and output variant call files. 
Commercial services, such as Seven Bridges Genomics and 
Geospiza, also have preconfigured, comprehensive, auto-
mated pipelines for their customers. 

Flexibility of pipelines, on the other hand, may be 
important for researchers who want to have complete 
control on the pipeline design to fit their projects. In such 
cases, it is important to have plasticity for users to customize 
pipelines. For example, a flexible pipeline system should 
allow users to integrate specific tools that are not part of a 
general purpose workflow and allow users to supply user- 
defined control files (e.g., providing a BED file to restrict the 
variant call within specific regions). There are a number of 
such pipelines that are well defined and easy to use, such as 

the GATK pipeline, gkno system (http://gkno.me/), Galaxy 
[48-50], and VAAST [30, 31].

Conclusion and Future Direction

Highly efficient and accurate bioinformatics tools are 
available for most of the steps for analyzing sequence data, 
from processing the raw NGS data to generating the final 
report of potential risk genes. Users can choose automated 
workflow versus customized pipelines to suit their research 
projects. Many bioinformatics tools are optimized, such that 
a small server (e.g., 48 cores, 250 GB RAM, 2 TB storage) can 
perform the whole analysis workflow within a reasonable 
time (e.g., 250 hours in nonparallel mode and 25 hours in 
parallel mode for one exome at 30× coverage, as bench-
marked by HugeSeq). Furthermore, the scientific com-
munity is converging towards standard workflows and 
standard file formats, crossing different research institutes, 
companies, and platforms. Several file formats are becoming 
standard, such as FASTQ/FASTA, SAM, BAM, VCF, and 
GFF3. Large publically funded projects, such as the 1000 
Genome Project, the HapMap Project, and the NHLBI GO 
Exome Sequencing Project, have played important roles in 
the unification process. 

Nevertheless, many challenges remain, and we would like 
to highlight a few: 1) data standards still need wider agree-
ment. For example, a number of variant discovery tools for 
SV and CNV use different file formats and need to be 
converted to the more standard format for downstream 
analysis [17]; 2) more standardized, automated workflows 
need to be developed to accommodate different data and 
projects and minimize the user interaction, such that diffe-
rent research groups can perform independent data analysis 
and the results can be easily compared; and 3) large, high- 
quality, and unified databases are essential for disease gene 
identification/prioritization, and continuous efforts from 
the scientific community are needed. 

In addition to the challenges, a number of improvements 
that are urgently needed for current analysis pipeline are 
being actively developed and implemented:

- Sequence mapping. Apply haplotype-based mapping 
and de novo assembly to reduce mismatches and 
increasing specificity. 

- Variant discovery and genotyping. Improve the se-
quencing technology (e.g., longer read length) and ana-
lytical methods (e.g., de novo assembly-based variant 
discovery) to identify and infer genotypes of complex 
variations, such as SVs, CNVs, large indels, and tran-
sposons. 

- Candidate gene prioritization. Develop complex prio-
ritization strategies for large pedigrees, combine linkage 

http://www.genominfo.org
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analysis with association studies, and integrate pathway 
analysis to eliminate false positive genes. 

- Non-coding variant annotation. Understand the func-
tional impact of non-coding DNA elements, as the 
Encyclopedia of DNA Elements (ENCODE) Project 
intended to do, to greatly broaden our view of disease- 
causing mutations. 

- Cloud computing. High-throughput sequencing pro-
jects generate large amounts of data, create huge com-
putational challenges, and require numerous tools and 
libraries for comprehensive data analysis. Develop 
cloud-based computing resources, such as the 1000 
Genome Project (http://aws.amazon.com/1000geno-
mes/), to create a more efficient way of managing, 
processing, and sharing data.

High-throughput sequencing will continue to transform 
biomedical sciences in almost every aspect [51] and provide 
new insights for our understanding of human diseases. For 
example, three groups recently reported discoveries of 
several new autism genes and suggested a much more com-
plex disease mechanism, based on large-scale sequencing 
data of nearly 600 trios and 935 additional cases [52-54]. 
Along with the revolutionary discoveries based on NGS data, 
new tools and techniques will be developed to facilitate fast 
and accurate analysis. 
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