• Title/Summary/Keyword: Newton-Rapson method

Search Result 7, Processing Time 0.022 seconds

Application of the Photoelastic Experimental Hybrid Method with New Numerical Method to the High Stress Distribution (고응력 분포에 새로운 광탄성실험 하이브릿법 적용)

  • Hawong, Jai-Sug;Tche, Konstantin;Lee, Dong-Hun;Lee, Dong-Ha
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.73-78
    • /
    • 2004
  • In this research, the photoelastic experimental hybrid method with Hook-Jeeves numerical method has been developed: This method is more precise and stable than the photoelastic experimental hybrid method with Newton-Rapson numerical method with Gaussian elimination method. Using the photoelastic experimental hybrid method with Hook-Jeeves numerical method, we can separate stress components from isochromatics only and stress intensity factors and stress concentration factors can be determined. The photoelastic experimental hybrid method with Hook-Jeeves had better be used in the full field experiment than the photoelastic experimental hybrid method with Newton-Rapson with Gaussian elimination method.

  • PDF

Aerodynamic Analysis of Horizontal Axis Wind Turbines using Nonlinear Bound Vortex Correction Method (비선형 구속 와류 보정법을 이용한 수평축 풍력 발전기의 공력 해석)

  • Kim, Ho-Geon;Lee, Seung-Min;Lee, Soo-Gab
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.307-310
    • /
    • 2008
  • Nonlinear Vortex Strength Correction Method is developed for improvement of vortex lattice method which can't calculate the separated flow conditions and the viscous effect. In this method, the vortex strength on the blade surface is determined by matching the lift force from vortex lattice method with the lift force from aerodynamic coefficients table as the same circulation is added to or subtracted from all chord wise vortices. For considering the nonlinearities due to the neighboring blade sections, sophisticated Newton-Rapson algorithm is applied. The validation of this method was done by comparing the simulations with the measurements on the NREL Phase-VI horizontal axis wind turbine(HAWT) in the NASA Ames wind tunnel under uniform conditions. This method gives good agreements with experiments in most cases.

  • PDF

An Application of Coordinate Transformation Method on Lubricating Characteristics of Negative Pressure Slider

  • Hwang, Pyung;Park, Sang-Shin;Kim, Eun-Hyo
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.285-286
    • /
    • 2002
  • The lubricating characteristics of negative pressure slider were performed by using divergence formulation method with the coordinate transformation method. This method makes it possible to deal with an arbitrary configuration of a lubricated surface. The pressure profile of the slider is calculated. These results are compared to that from direct numerical method. The steady-state, including minimum film thickness, pitching and rolling angle are calculated by multi-dimensional Newton-Rapson method. The stiffness and damping characteristics are also calculated.

  • PDF

Development of OPF Algorithm with Changing Inequality to Equality (부등호의 등호화를 통한 OPF 해석 알고리즘 개발)

  • Ju, Un-Pyo;Kim, Geon-Jung;Choe, Jang-Heum;Eom, Jae-Seon;Lee, Byeong-Il
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.7
    • /
    • pp.339-344
    • /
    • 2000
  • This paper presents an improved optimal power flow algorithm, which solves an optimization problem with equality constraints with converted inequality constraints. The standard OPF and the penalty function method should do reconstructing active constraints among the inequality constraints so that the activation of the inequality constraints has been imposing an additional burden to solve OPF problem efficiently. However the proposed algorithm converts active inequality constraints into the equality constraints in order to preclude us from reconstructing the procedures. The effectiveness of the new OPF algorithm is validated by applying the IEEE 14 bus system.

  • PDF

p-Version Elasto-Plastic Finite Element Analysis by Incremental Theory of Plasticity (증분소성이론에 의한 p-Version 탄소성 유한요소해석)

  • 정우성;홍종현;우광성
    • Computational Structural Engineering
    • /
    • v.10 no.4
    • /
    • pp.217-228
    • /
    • 1997
  • The high precision analysis by the p-version of the finite element method are fairly well established as highly efficient method for linear elastic problems, especially in the presence of stress singularity. It has been noted that the merits of the p-version are accuracy, modeling simplicity, robustness, and savings in user's and CPU time. However, little has been done to exploit their benefits in elasto-plastic analysis. In this paper, the p-version finite element model is proposed for the materially nonlinear analysis that is based on the incremental theory of plasticity using the constitutive equation for work-hardening materials, and the associated flow rule. To obtain the solution of nonlinear equation, the Newton-Raphson method and initial stiffness method, etc are used. Several numerical examples are tested with the help of the square plates with cutout, the thick-walled cylinder under internal pressure, and the circular plate with uniformly distributed load. Those results are compared with the theoretical solutions and the numerical solutions of ADINA

  • PDF

Contact Fatigue Life Prediction under Elliptical Elastohydrodynamic Lubrication (타원접촉 EHL 상태에서의 접촉피로수명 예측)

  • Kim, Tae-Wan;Lee, Sang-Don;Koo, Young-Pil;Cho, Yang-Joo
    • Tribology and Lubricants
    • /
    • v.22 no.6
    • /
    • pp.320-328
    • /
    • 2006
  • In this study, the simulation of rolling contact fatigue based on stress analysis is conducted under Elastohydrodynamic Lubrication state. To predict a crack initiation life accurately, it is necessary to calculate contact stress and subsurface stresses accurately. Contact stresses are obtained by contact analysis of a semi-infinile solid based on the use of influence functions and the subsurface stress field is obtained using rectangular patch solutions. And a numerical algorithm using Newton-Rapson method was constructed to calculate the Elastohydrodynamic lubrication pressure. Based on these stress values, several multiaxial high-cycle fatigue criteria are used and the critical loads corresponding to fatigue limits are calculated.

The Noise Analysis of Ship HVAC System Based on GUI Modeling (GUI Modeling을 기반으로한 선박의 HVAC System 소음 해석)

  • 이철원;김노성;최수현
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.1300-1305
    • /
    • 2001
  • One of the main noise sources in cabin onboard ships is HVAC system. Up to now, the HVAC system designer manually calculates the HVAC system noise, or uses the program that is generally based on text user interface. In such a case, it is difficult to use the program and also to obtain the flow induced noise. In this study, the HVAC noise analysis program has been developed, which is based on GUI user interface that include 3.D modelling and model modification modules. For calculation of the insertion loss of HVAC system elements, NEBB experimental data and plane wave theory are used. And in order to obtain the flow rate information in each HVAC elements which is used to calculate the flow induced noise calculation, Global Converging Newton-Rapson Method is used.

  • PDF