• Title/Summary/Keyword: Newton-Raphson 알고리즘

Search Result 73, Processing Time 0.02 seconds

A STATIC IMAGE RECONSTRUCTION ALGORITHM IN ELECTRICAL IMPEDANCE TOMOGRAPHY (임피던스 단층촬영기의 정적 영상 복원 알고리즘)

  • Woo, Eung-Je;Webster, John G.;Tompkins, Willis J.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1991 no.05
    • /
    • pp.5-7
    • /
    • 1991
  • We have developed an efficient and robust image reconstruction algorithm for static impedance imaging. This improved Newton-Raphson method produced more accurate images by reducing the undesirable effects of the ill-conditioned Hessian matrix. We found that our electrical impedance tomography (EIT) system could produce two-dimensional static images from a physical phantom with 7% spatial resolution at the center and 5% at the periphery. Static EIT image reconstruction requires a large amount of computation. In order to overcome the limitations on reducing the computation time by algorithmic approaches, we implemented the improved Newton-Raphson algorithm on a parallel computer system and showed that the parallel computation could reduce the computation time from hours to minutes.

  • PDF

A Proposal of New Method for EICT Image Reconstruction A Hybrid Approach Using Genetic Algorithm and Newton-Raphson Method - (전기적 임피던스에 의한 컴퓨터 단층촬영 영상의 재구성의 위한 새로운 방법의 제안 - 유전알고리즘과 뉴으튼-랩슨법을 이용한 복합방법 -)

  • 조경호;고성택;고한석
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.4
    • /
    • pp.91-99
    • /
    • 1996
  • A hybrid approach employing both the genetic algorithm and the newton-raphson method is proposed for the electrical impedance computed tomography (EICT) image reconstruction. Computational experiments based on the new concept have shown promising results for several noise-free models. In particular, the resistance distribution of the tested models having resistivity ratio up to 100:1 has been reconstructed sucessfully. Using the proposed mehtod, it is also possible to get the reconstruction by the conventional iterative approaches be difficult to vonverge to a robust solution. If the compution power is enhanced further, the proposed method is expected to stimulate the practical applications of the EICT technology in the near future.

  • PDF

A New Algorithm of Load Flow without Using Jacobian Matrix (Jacobian Matrix를 배제한 조류계산의 새 알고리즘에 관한 연구)

  • Moon, Young-Hyun;Roh, Tae-Hoon;Ryu, Heon-Soo;Heo, Young
    • Proceedings of the KIEE Conference
    • /
    • 1997.07c
    • /
    • pp.1074-1077
    • /
    • 1997
  • Newton-Raphson method is mainly used since it shows remarkable convergence characteristics. It, however, needs considerable calculation time in construction and calculation of inverse Jacobian matrix. In this paper a new type of load flow equation is summarized as follows: Since inverse calculation of Jacobian matrix is not needed in the suggested algorithm but using complex bus voltage, the calculation process is simple. With the simple structure, reduction of calculation time is achieved.

  • PDF

Development of Optimal Path Planning for Automated Excavator (자동화 굴삭기 최적경로 생성 알고리즘 개발)

  • Shin, Jin-Ok;Park, Hyong-Ju;Lee, Sang-Hak;Hong, Dae-Hee
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.78-83
    • /
    • 2007
  • The paper focuses on the establishment of optimized bucket path planning and trajectory control designated for force-reflecting backhoe reacting to excavation environment, such as potential obstacles and ground characteristics. The developed path planning method can be used for precise bucket control, and more importantly for obstacle avoidance which is directly related to safety issues. The platform of this research was based on conventional papers regarding the kinematic model of excavator. Jacobian matrix was constructed to find optimal joint angles and rotation angles of bucket from position and orientation data of excavator. By applying Newton-Raphson method optimal joint angles and bucket orientation were derived simultaneously in the way of minimizing positional errors of excavator. The model presented in this paper was intended to function as a cornerstone to build complete and advanced path planning of excavator by implementing soil mechanics and further study of excavator dynamics together.

  • PDF

An Efficient Improvement of the Iterative Eigenvalue Calculation Method and the Selection of Initial Values in AESOPS Algorithm (AESOPS 알고리즘의 고유치 반복계산식과 고유치 초기값 선정의 효율적인 개선에 관한 연구)

  • Kim, Deok-Young;Kwon, Sae-Hyuk
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.11
    • /
    • pp.1394-1400
    • /
    • 1999
  • This paper presents and efficient improvement of the iterative eigenvalue calculation method and the selection of initial values in AESOPS algorithm. To determine the initial eigenvalues of the system, system state matrix is constructed with the two-axis generator model. From the submatrices including synchronous and damping coefficients, the initial eigenvalues are calculated by the QR method. Participation factors are also calculated from the above submatrices in order to determine the generators which have a important effect to the specific oscillation mode. Also, the heuristically approximated eigenvalue calculation method in the AESOPS algorithm is transformed to the Newton Raphson Method which is largely used in the nonlinear numerical analysis. The new methods are developed from the AESOPS algorithm and thus only a few calculation steps are added to practice the proposed algorithm.

  • PDF

An exact floating point square root calculator using multiplier (곱셈기를 이용한 정확한 부동소수점 제곱근 계산기)

  • Cho, Gyeong-Yeon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.8
    • /
    • pp.1593-1600
    • /
    • 2009
  • There are two major algorithms to find a square root of floating point number, one is the Newton_Raphson algorithm and GoldSchmidt algorithm which calculate it approximately by iterating multiplications and the other is SRT algorithm which calculates it exactly by iterating subtractions. This paper proposes an exact floating point square root algorithm using only multiplication. At first an approximate inverse square root is calculated by Newton_Raphson algorithm, and then an exact square root algorithm by reducing an error in it and a compensation algorithm of it are proposed. The proposed algorithm is verified to calculate all of numbers in a single precision floating point number and 1 billion random numbers in a double precision floating point number. The proposed algorithm requires only the multipliers without another hardware, so it can be widely used in an embedded system and mobile production which requires an efact square root of floating point number.

A Planar Curve Intersection Algorithm : The Mix-and-Match of Curve Characterization, Subdivision , Approximation, Implicitization, and Newton iteration (평면 곡선의 교점 계산에 있어 곡선 특성화, 분할, 근사, 음함수화 및 뉴턴 방법을 이용한 Mix-and-Mntch알고리즘)

  • 김덕수;이순웅;유중형;조영송
    • Korean Journal of Computational Design and Engineering
    • /
    • v.3 no.3
    • /
    • pp.183-191
    • /
    • 1998
  • There are many available algorithms based on the different approaches to solve the intersection problems between two curves. Among them, the implicitization method is frequently used since it computes precise solutions fast and is robust in lower degrees. However, once the degrees of curves to be intersected are higher than cubics, its computation time increases rapidly and the numerical stability gets worse. From this observation, it is natural to transform the original problem into a set of easier ones. Therefore, curves are subdivided appropriately depending on their geometric behavior and approximated by a set of rational quadratic Bezier cures. Then, the implicitization method is applied to compute the intersections between approximated ones. Since the solutions of the implicitization method are intersections between approximated curves, a numerical process such as Newton-Raphson iteration should be employed to find true intersection points. As the seeds of numerical process are close to a true solution through the mix-and-match process, the experimental results illustrates that the proposed algorithm is superior to other algorithms.

  • PDF

Classification of Ultrasonic NDE Signals Using the Expectation Maximization (EM) and Least Mean Square (LMS) Algorithms (최대 추정 기법과 최소 평균 자승 알고리즘을 이용한 초음파 비파괴검사 신호 분류법)

  • Kim, Dae-Won
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.1
    • /
    • pp.27-35
    • /
    • 2005
  • Ultrasonic inspection methods are widely used for detecting flaws in materials. The signal analysis step plays a crucial part in the data interpretation process. A number of signal processing methods have been proposed to classify ultrasonic flaw signals. One of the more popular methods involves the extraction of an appropriate set of features followed by the use of a neural network for the classification of the signals in the feature spare. This paper describes an alternative approach which uses the least mean square (LMS) method and exportation maximization (EM) algorithm with the model based deconvolution which is employed for classifying nondestructive evaluation (NDE) signals from steam generator tubes in a nuclear power plant. The signals due to cracks and deposits are not significantly different. These signals must be discriminated to prevent from happening a huge disaster such as contamination of water or explosion. A model based deconvolution has been described to facilitate comparison of classification results. The method uses the space alternating generalized expectation maximiBation (SAGE) algorithm ill conjunction with the Newton-Raphson method which uses the Hessian parameter resulting in fast convergence to estimate the time of flight and the distance between the tube wall and the ultrasonic sensor. Results using these schemes for the classification of ultrasonic signals from cracks and deposits within steam generator tubes are presented and showed a reasonable performances.

A Study on Development of a New Algorithm to Solve Load Flow for Distribution Systems (배전계통조류계산을 위한 새로운 알고리즘에 관한 연구)

  • Moon, Young-Hyun;Yoo, Sung-Young;Choi, Byoung-Kon;Ha, Bock-Nam;Lee, Joong-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1998.07c
    • /
    • pp.918-922
    • /
    • 1998
  • With the development of industry, the qualitical advancement of power is needed. Since it is placed in the end step of power system, the fault at the distribution system causes some users blackout directly. So if the fault occurs, quick restoration is very important subject and, for the reason, induction of the distribution automation system is now being progressed briskly. For the quick restoration of the faulted distribution system, the load shedding of the blackout-area must be followed, and the other problems like the shedded load, faulted voltage and the rest may cause other accident. Accordingly load shedding must be based on the precise calculation technique during the distribution system load flow(dist flow) calculation. In these days because of its superior convergence characteristic the Newton-Raphson method is most widely used. The number of buses in the distribution system amounts to thousands, and if the fault occurs at the distribution system, the speed for the dist flow calculation is to be improved to apply to the On-Line system. However, Newton-Raphson method takes much time relatively because it must calculate the Jacobian matrix and inverse matrix at every iteration, and in the case of huge load, the equation is hard to converge. In this thesis. matrix equation is used to make algebraical expression and then to solve load flow equation and to modify above defects. Then the complex matrix is divided into real part and imaginary part to keep sparcity. As a result time needed for calculation diminished. Application of mentioned algorithm to 302 bus, 700 bus, 1004 bus system led to almost identical result got by Newton-Raphson method and showed constant convergence characteristic. The effect of time reduction showed 88.2%, 86.4%, 85.1% at each case of 302 bus, 700 bus system 86.4%, and 1004 bus system.

  • PDF

Optimum Design of Composite Framed Structures Based Reliability Index (신뢰성지수를 고려한 합성 뼈대구조물의 최적설계에 관한 연구)

  • Jung, Young Chae;Kim, Jong Gil
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.4 s.65
    • /
    • pp.389-401
    • /
    • 2003
  • The purpose of this study is to develop an algorithm, which can be designed the optimal sections of the composite framed structures constituted with the beams and the columns consisted of H type of steel section and concrete considering the reliability index. The optimized problem or the composite framed structures is formulated with the objective function and the constraints taking the section sizes as the design variables. The objective functions are constituted by the total costs of constructions. Also, the constraints are derived by considering the reliability index of section stress and allowable stress. The algorithm optimized the section of the composite framed structures utilizes the SUMT method using the modified Newton-Raphson direction method. The optimizing algorithm developed in this study is applied to the numerical examples with respecting a one-bay, one-story composite framed structure and a one-bay five-story one for the practical utilization of design on the composite framed structures using the reliability indices$({\beta})$ three and zero. In addition, their numerical results are compared and analyzed to examine the possibility of optimization the applicability, and the convergence this algorithm.